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1. Abstract and Summary 

The demand uncertainty propagated and 
magnified over the semiconductor demand-supply 
network is the crucial cause of poor 
manufacturing/logistic plans. To manage the demand 
variability, appropriate demand 
aggregation/forecasting approaches are known to be 
effective. In the second year of this research task, 
there are three main research accomplishments: 
optimum demand aggregation/disaggregation 
hierarchy, and forecasting by dynamic EWMA 
demand disaggregation. In the first accomplishment, 
we have defined and proposed optimum demand 
planning hierarchy that can greatly improve the 
quality of demand plans. Finally, the dynamic 
EWMA demand disaggregation approaches improve 
the demand forecasts by taking into account the 
dynamic changes of product mix.  

 
2. Technical Results 

 
2.1 Optimum Demand Planning Hierarchy 
 

An On-Line Analytical Processing (OLAP) tool 
is useful for analysis of multi-perspective 
(multi-dimensional) demand aggregation and 
disaggregation. Demand planners can use the tool to 
quickly roll up demands to an aggregated level for a 
total demand or drill down a total demand to detailed 
demands from different perspectives. For example, a 
semiconductor demand planner can roll up (or 
aggregate) the detailed demand to calculate the total 
demand for logic IC in North America and Europe 
during the first during the last two quarters of the 
year. The demand planner can also drill down (or 
disaggregate) the total demand to see, for example, 
the proportion of the North American market. OLAP 
technologies, however, do not provide users the most 
effective way of analyzing different levels of demand 
aggregation. We first describe and define different 
types of demand planning views and demand 
planning hierarchy. A symbolic representation system 
to express these views and the demand planning 
hierarchies is also proposed. Based on the degree of 
demand fluctuation or the forecast accuracy, the 
evaluation metrics are defined to evaluate the 
performance of demand planning hierarchy. Finally, 
an optimization method based on the dynamic 
programming approach is also developed to find the 
optimum demand planning hierarchy. A demand data 

set from a semiconductor manufacturing company is 
used to test the algorithms proposed in this research. 
 
2.1.1 Representation of Demand Views and 
Planning Hierarchies 

 
Product demands can be analyzed from different 

views such as time, product, customer, etc., and there 
are usually more than one hierarchical levels or 
attributes in these views. Take the time view as an 
example. The highest level could be the year; the 
quarter could be the next, then the month; and the 
week could the most detailed time level. 

In this research, we develop notations to represent 
the demand views, different hierarchical levels, and 
the relationships among these levels and attributes. 
The view names are in capital letters like TIME, 
PRODUCT, etc. The hierarchical levels of a view are 
represented by the subscripts following the view 
name, for example, TIMEquarter represents the time 
view at the quarter level. In addition, “all” is used to 
denote the highest aggregated level of this view. For 
example, PRODUCTall represents the demand for all 
products. Also we classified the demand views into 
the following three categories: view with hierarchical 
levels, view with attributes and view with mixed 
attributes. 
 

View with Hierarchical Levels 

Fig. 1 Hierarchical relationship in the customer view 
 
The view of customer geography can be an 

example. Enterprises may have the demand data from 
each individual customer, and these individual 
customer data can be added up to a higher 
geographical level like city or nation. And, these 



higher-level data can be summed to an even higher 
level such as continent. To describe such a 
hierarchical relationship, a symbol “•” would be 
adopted in this research. Take the customer view for 
an example. CUSTOMERnation means that we’re now 
looking at the level “nation” for our demand data, 
and CUSTOMERcity means the nation demand is 
broken down to the city demand. Therefore, the 
notation CUSTOMERnation•city describes the 
hierarchical relationship between “nation” and “city”. 
Figure 1 provides a detailed example to illustrat the 
customer view. 
 
View with Attributes 

Besides the views with hierarchical levels, there 
are also views with attributes that don’t have 
hierarchical relationships. These attributes are 
independent, and each one can be an independent 
demand perspective. Take PC memory modules for 
example. One attribute may be the functional type of 
the module. It could be SDRAM, DDR, or RDRAM. 
We can use this functional feature to view the 
product demands. Another possible attribute may be 
the memory access rate. We can look at the demand 
data by different access rates, such as 10ns, 12ns, or 
16ns. Also we can use the combination of the access 
rate and the function type to look at the demands. 
This kind of views becomes more complex as the 
product can be characterized by more attributes. We 
use capital letters to specify the view name, and the 
subscript is used to denote the attributes as well. 
What’s different is that a symbol “ ×” is placed in 
between two attributes to represent the perspective 
with a combination of the two independent attributes. 
In the example above, PRODUCTtype means that 
we’re considering demand data of different types of 
memory module, and PRODUCTtype ×size means that 
now the combination of the type and size is a 
perspective of interest. Also, we use parentheses () 
behind the name of an attribute to represent its 
attribute value. PRODUCTrate (10ns) and PRODUCTrate 

(12ns) are the examples. The former points out the 
demand is for product with “rate = 10ns”, and the 
latter indicate the demand data is for product with 
“rate = 12ns”. Figure 2 shows the example. 

 
Fig 2 Product view with attributes 

 

View with Mixed Attributes 
There may be many other forms of “views of mixed 
attributes”. Here is another example: PRODUCT(A•B) 

×C. In this case, the attribute B is hierarchical to the 
attribute A, and then the combination of B and C is 
considered. In brief, with the proposed notation 
system, any hierarchical and/or combinational 
relationships among attributes can be expressed. 
 
Demand Planning Hierarchy 

the demand planning hierarchy is composed of 
several steps. Each step represents a demand 
perspective with each demand view specified at a 
certain aggregation level. Suppose that there are three 
views to look at the demand data: TIME (with two 
levels: quarter and month) and CUSTOMER (with 
two levels: region and city) are hierarchical-level 
views, while PRODUCT (with two attributes: 
function and size) is an attribute view. If we want to 
see the monthly demands of different regions, it will 
be expressed as TIMEquarter•month × CUSTOMERregion 
×PRODUCTall. Remember that a demand planning 
hierarchy is a sequence of demand planning steps 
that starts from the highest hierarchical level, and 
ends at the most detailed levels of each view. And, 
the difference between two steps is only one 
aggregation level difference in a demand view. We 
can then express the demand planning hierarchy by a 
demand planning path (DPP) with all steps listed and 
connected by “|” symbol. For instance, a possible 
DPP for the example above can be expressed as 
follows: 

TIMEquarter ×CUSTOMERall ×PRODUCTall 

| 
TIMEquarter ×CUSTOMERregion ×PRODUCTall 

| 
TIMEquarter ×CUSTOMERregion•city ×PRODUCTall 

| 
TIMEquarter•month ×CUSTOMERregion•city ×

PRODUCTall 
| 

TIMEquarter•month ×CUSTOMERregion•city ×
PRODUCTfunction 

| 
TIMEquarter•month ×CUSTOMERregion•city ×

PRODUCTfunction ×size 

 
2.1.2 Evaluation and Optimization of Demand 

Planning Hierarchy 
To evaluate demand planning hierarchy, we use 

two metrics: weighted-average CV and 
weighted-average CFE. The weighted-average CV is 
defined as: 
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where i stands for the number of demand series under 
an aggregation level, CVi is the coefficient of 
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all sample means. The weighted-average CV is to 
evaluate the demand variability. For evaluating 
forecast accuracy, we use xMSE /  (referred to as 
coefficient of forecast error, CFE), where MSE stands 
for the mean square error of the forecast. The 
weighted-average CFE is then chosen to evaluate the 
overall forecast performance of each demand 
planning hierarchy. 

Searching for an optimum demand planning path 
(DPP) is similar to a network’s shortest path problem. 
The different aggregation levels are different nodes 
in the network. These nodes can be grouped into 
different stages, and each stage contains nodes 
having the same degree of aggregation, i.e. having 
the same total number of hierarchical levels and 
attributes. The arcs connecting nodes are the feasible 
paths for the demand planning hierarchy to take. An 
arc is connecting a node in a stage with a higher 
degree of aggregation to a node in a stage with a 
lower degree of aggregation. Each arc has its length. 
Here, the arc length will be the calculated evaluation 
metric of the connected node with a lower degree of 
aggregation. Figure 3 shows the constitution of the 
Demand Planning Path Dynamic Programming. 

 

 
Fig. 3 Dynamic programming for optimum DPP 
 

2.1.3 Case Study: Semiconductor Demand 
 

The demand data set from a semiconductor 
manufacturing company is used construct the 
optimum demand planning hierarchy. This data set 
consists of three views: TIME and CUSTOMER are 
hierarchical views, and PRODUCT view has mixed 
attributes. The demand data is across 157 weeks, and 
there are three levels in the time view: quarter, month 
and week. Therefore this data set can be also viewed 
as 37-month or 13-quarter demand data. As to the 

customer view, there are two levels: GG and GC. GC 
stands for the individual customer code, and GG is a 
higher-leveled geographical code. A GC code 
belongs to only one GG category and a GG code 
contains 1 to 40 GC codes. In this data set, there are 
4 GG codes and 73 GC codes. The product view is 
more complicated. There are four attributes in this 
view: T, L, P and PartNum. T stands for “technology”, 
which indicates the type of manufacturing technology. 
L stands for “number of metal layers”, and P stands 
for “package”, which indicates what packaging 
technology is used to encapsulate this product. These 
attributes are independent, and each one can be an 
independent demand perspective. But a fourth 
attribute “PartNum”, which stands for “part number” 
of the product, is nested to the combination of T, L 
and P. That is, one PartNum belongs to a specific 
combination of T, L and P. If PartNum 113 belongs to 
the combination of T(1), L(2) and P(3), it’s 
impossible to see PartNum 113 appearing under the 
combination of T(2), L(3), and P(4). This is why we 
call this view “the view with mixed attributes”, 
because the relationships among T, L and P are 
independent, while there’s another attribute PartNum 
nested to the combination of the above three. In this 
data set, there are 21 types of technology, 8 numbers 
of metal layers, 17 types of packaging technology, 
and 941 part numbers. 

First we applied our dynamic programming 
algorithm based on the weighted-average CV. The 
goal is to find a DPP that is the smoothest, i.e., 
smallest weighted-average CV’s throughout the path. 
The result is shown in Fig. 4. 

 
Fig. 4  Least-fluctuation demand planning path 

 
 We then use the weighted-average CFE to find 
the least-forecast-error demand planning path in 
Figure 5. 

 
Fig. 5 Least-forecast-error demand planning path 



2.2  Dynamic EWMA Demand Disaggregation 
The famous Moore’s law points out the importance 

of semiconductor product life cycle (PLC). PLC, 
therefore, is an important factor affecting demand 
forecasting. However, demand disaggregation, one of 
the most important tasks in demand planning, seldom 
takes PLC effect into consideration. Here, the 
exponentially weighted moving average (EWMA) 
statistic is utilized to develop a disaggregation 
method that captures the PLC effectsptured by 
dynamically adjusting the smoothing constant of the 
EWMA statistic. 
 
2.2.1 EWMA Disaggregation Method 

Consider a n-week product demand dataset, the 
estimated proportion of week “n+1” with the EWMA 
disaggregation formula is defined as:  
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where 
kid ,  = Demand of product “i” at time “k” 

kiw ,  = Weight of product “i” at time “k” 
n = Number of total historical data  
m = Number of total products 

iα  = Smoothing constant of product “i” 
 
Taking different PLC phases into considerations, 

when the PLC is going through a stable phase such as 
“introduction” or “maturity”, trend of the data is 
steady and the demand variation is mostly due to the 
demand noise. In this case, a lower α value in the 
EWMA disaggregation formula is better because the 
smaller α value puts equal weights on historical 
data and the effect of noise will be minimized. On the 
other hand, a bigger α value should be used when 
the data is going through the “growth” or “decline” 
phases where the demand mean level changes rapidly. 
A higher α value puts more weights on the latest 
historical data and the proportion estimate be mainly 
determined by the latest observations. The relation 
between the smoothing constant α and the PLC 
pattern is shown in Figure 6. 

 
Fig. 6 Best-Fitting αat different PLC Phases 

 
2.2.2 Dynamic Adjusting Algorithm 

We first develop a metric to determine PLC phase 
transition. We refer to the metric as “PLC indicator”. 
We then develop a methodology to adjust the value 
of α based on the PLC indicator.  The PLC indicator 
proposed in this study is sample auto-correlation 
(SAC): 
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where 
jρ̂  = Sample auto-correlation with lag “j” 

n = Current time period 
x  = observations of samples 

 
Figure 7 shows the relationships amongα, SAC 

and PLC phases. 

 
Fig. 7 α, SAC and PLC 

 Figure 8 shows the procedure of adjusting α 
based on SAC. 

◎ New data available  
◎ Calculate new SAC 
◎ U th t d f SAC t ti t th

END 

START

◎ Given the Initial αi by Steepest-Descent Search 
◎ Calculate the current SAC 

  
Fig. 8 α adjustment procedure 

 
Experiments show that the dynamic EWMA 

disaggregation method has improvement up to 90% 
over the conventional methods. 
 

 


