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1. Abstract and Summary 

The demand uncertainty propagated and 
magnified over the semiconductor demand-supply 
network is the crucial cause of poor 
manufacturing/logistic plans. To manage the demand 
variability, appropriate demand 
aggregation/forecasting approaches are known to be 
effective. In the first year of this research task, a 
multivariate time series model is used as a study 
vehicle to investigate the effect of aggregating 
interrelated demands. Heuristic demand grouping 
algorithms, i.e., a variety of Greedy algorithms, are 
also developed to minimize the safety stock costs 
under demand uncertainty. The research results 
provide practitioners practical guidelines and 
methodologies to select proper 
aggregation/forecasting approaches and to group 
demands for minimum safety stock costs. 

 
2. Technical Results 

 
2.1  Aggregation and Forecasting of Interrelated 
Demands for Operations Planning 
 

An On-Line Analytical Processing (OLAP) tool 
is useful for analysis of multi-perspective 
(multi-dimensional) demand aggregation and 
forecasting. Demand planners can use the tool to 
quickly roll up demands to an aggregated level for a 
total demand or drill down a total demand to detailed 
demands from different perspectives. For example, a 
semiconductor demand planner can roll up (or 
aggregate) the detailed demand to calculate the total 
demand for logic IC in North America and Europe 
during the first during the last two quarters of the 
year. The demand planner can also drill down (or 
disaggregate) the total demand to see, for example, 
the proportion of the North American market. There 
are usually three perspectives (dimensions) to view 
the demands: time, product type, and region. To 
better understand the natures of certain demands, 
users of OLAP tools can choose desired perspectives 
to perform the roll-up and/or drill-down analyses. 
Demand aggregation/disaggregation is then followed 
by statistical demand forecasting to further improve 
the accuracy of demand plans. However, the effect of 
statistical forecasting is obscure and planners are 
hesitant to use the pre-determined statistical models 
because the flawed models often incur more errors 
and cause poorer forecasts.  

 
This research will use the bivariate vector 

autoregression (VAR(1)) time series model as a study 
vehicle to investigate the effects of aggregating two 
interrelated demands. Performance of corresponding 
forecasting approaches will be then derived and 
evaluated. The goal of this research is to use certain 
statistical properties of the demands to develop 
principles that can assist the demand planners to 
determine whether demand aggregation and/or 
statistical forecasting are needed.  
 
2.1.1 VAR(1) Demand Model and Demand 
Planning Approaches 

 
In practice, most time-variant demands are 

observed to follow autoregression time-series models. 
Particularly, the first order autoregression, AR(1), 
model is widely applied in both practice and 
literature (Lee et al., 1997). Since the interrelation of 
demands is the focal point of our research, the first 
order bivariate vector autoregression, VAR(1), time 
series model (Box and Tiao, 1977, Tiao and Box, 
1981, and Tiao and Tsay, 1983) is chosen as a study 
vehicle. Bivariate VAR(1) demands can be denoted 
as a vector: [ ]′= ttt XXX 21 ,  and the VAR(1) model 
can be expressed as: 

ttt aXuX +Φ+= −1      (2.1) 
where 

[ ]′= 21 , xx uuu is the constant vector;  
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In the VAR(1) model, φ 11 and φ 22 represent the 
“auto-correlation elements” that dictate how much a 
demand depends on its own earlier demands; φ12 
and φ21 represent the “inter-correlation elements” that 
determine how the two demands correlate to each 
other. In this research, we investigate five possible 
demand planning approaches in response to the 
bivariate VAR(1) demands: 

 



(1) Approach 1: The manufacturer lacks the 
technology of statistical forecasting. Demands 
are handled as simple time-invariant data 
sequences. The demand variability is measured 
by the standard deviation. The safety stock (or 
production capacity) is planned separately for 
each demand based on a multiple of its standard 
deviation. 

(2) Approach 2:  The manufacturer aggregates the 
two demands together. The aggregated demand, 
denoted by Yt (=X1t+X2t), is handled as a 
time-invariant data sequence. The safety stock 
(or production capacity) is planned for two 
demands together based on a multiple of Yt’s 
standard deviation. 

(3) Approach 3: The manufacturer owns the 
statistical forecasting technology but lacks 
knowledge of multivariate time series. Demands 
are handled as two independent time series. 
AR(1) time series models are used as the 
statistical forecasting models. Statistical 
forecasting is carried out separately based on the 
estimated AR(1) time series model for each 
demand. The safety stock (or production capacity) 
is planned separately for each demand based on a 
multiple of its forecast standard error.      

(4) Approach 4: The manufacturer aggregates the 
two demands together. The aggregated demand is 
handled as an AR(1) time series. The safety stock 
(or production capacity) is planned for two 
demands together based on a multiple of the Yt’s 
forecast standard error.  

(5) Approach 5: The manufacturer owns the 
technology of forecasting multivariate time series. 
Statistical forecasting is based on the VAR(1) 
model. Safety stock (and/or production capacity) 
is planned separately for each demand based on a 
multiple of its forecast standard error. 
 

2.1.2 Performance Analysis of Demand 
Planning Approaches 

To analyze and compare the above five 
approaches, theorems are developed to understand 
the properties of the time series aggregated from 
VAR(1) time series.  

 
Theorem 2.1: 

If X1t and X2t follow VAR(1) model in (2.1), then 
X1t can be expressed as V1t+V2t where V1t and V2t 
are two AR(1) time series. Similarly, X2t can be 
expressed as W1t+W2t where W1t及 W2t are two 
AR(1) time series. 

 
Theorem 2.2: 

D1t and D2t are two stationary AR(1) time series. 
Let Dt be the sum of D1t and D2t, i.e. 

ttt DDD 21 += . Suppose that Dt is thought to be 
an AR(1) time series, i.e., ttaDt DuD εϕ ++= −1 . 
The expected maximum likelihood estimate of 

φ a and 2
εσ  are derived and formulas are 

provided. 
 
Corollary 2.1: 

X1t and X2t follow the AR(1) model in (2.1). If Yt 
is the sum of X1t and X2t, then Yt can be 
expressed as U1t+U2t where U1t and U2t are two 
AR(1) time series. 

 
2.1.3 Evaluations and Suggestions of Demand 

Planning Approaches 
 

With the understanding of the aggregated time 
series in the previous section, five demand planning 
approaches can be now analytically evaluated and 
compared. Overall, we have the following 
observations based on evaluation and comparison 
results.  

 
a. With aggregation and statistical forecasting 

capabilities, Approach 4 appears to be the best 
approach regardless of the scenarios. Approach 
4’s effetiveness is also the most stable and less 
affected by changes of demand correlation and 
ratio of variation sizes. 

b. The simple aggregation approach, Approach 2, 
performs quite as good as Approach 4 and 
outperforms Approach 5, the most sophisticated 
statistical forecasting approach, when the demand 
correlation is weak or negative. Its performance, 
however, worsens quickly as the demand 
correlation becomes positive and large and the 
two variation sizes become significantly different. 

c. Approach 3, even with its statistical forecasting 
capability, appears to be the worst approach. It 
outperforms Approach 2 only in Scenario 1 when 
two demands are more positively correlated and 
the variations sizes are different. 

 
Now, we summarize our observations and 

provide the following principles and guidelines for 
practitioners to adopt appropriate demand planning 
approaches under different situations. 
 
(1) Demand correlation is negative (ρ < 0) 

a. If aggregating demands only incurs a limited 
extra cost, Approach 2 appears to be the best 
choice since it requires only simple 
aggregation and does not need to build 
statistical model for forecasting. 

b. If demand aggregation will incur a 
substantial extra cost, Approach 5 should be 
adopted. However, Approach 5 requires a 
correct multivariate statistical model for 
accurate forecasts. When the demand 
correlation is insignificant but individual 
demands have significant autocorrelations, 
Approach 3 is a good choice for making 
more than 10% cost reduction. 



(2) Demand correlation is positive (ρ > 0) 
a. If the correlation is low, 0<ρ <0.2, and the 

extra aggregation cost is minimum, 
Approach 2 is still a good choice given that 
no statistical model is required for this 
approach.  

b. If the correlation is high,  ρ >0.2, and the 
extra aggregation cost is limited, Approach 4 
is more preferable. It should be noted that 
building a univariate time series model for an 
aggregated demand in Approach 4 is much 
more reliable and simpler than building the 
multivariate time series model in Approach 
5. 

c. If the extra aggregation cost is substantially 
large, Approach 5 has to be adopted. Again, 
Approach 3 can be used instead when low 
demand correlation and high autocorrelation 
are observed. 

 
2.2  Aggregation Strategies to Minimize Safety 
Stock Costs Under Uncertain Demands 
 

In this research, base on the inventory cost of 
(s,S) policy, we develop heuristic aggregation 
strategies to find combinations of multiple demand 
sources that achieve maximum cost saving.  
 
2.2.1   Inventory cost model under random 

demand 
In this research, inventory cost model is 

established based on (s,S) policy. Within each time 
unit, demands would consume the inventory. When 
the inventory level reaches exactly at the reorder 
point, replenishment is made. During this 
replenishment time, demands would continue to 
occur. However, the quantity of the demand per unit 
time is not in a fixed number, it cannot be known that 
how much quantity a customer would order before 
the transaction occurred. Based on the above 
assumptions, notations are defined as follows, 

1. AVG: average demand per unit time 
2. STD: standard deviation of demand per unit 

time 
3. L: replenishment lead time 
4. K: ordering cost (setup cost)－a constant 
5. h: unit holding cost, i.e. cost of holding one 

unit inventory for one unit time 
6. δ: stocking out probability; i.e., service 

level %100)1( ×−= δ  
7. c: unit inventory cost, i.e., cost of one 

product unit 
 

The inventory cost becomes 
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Consider 2 customer zones (demand sources) that 

can be served by two local distributors or by a single 
centralized distributor. Let α be the ratio of the 
centralized distributor lead-time to the local 
distributor lead-time; u be the ratio of the expected 
number of demand 1 to the expected number of 
demand 2; and v be the ratio of the standard deviation 
of demand 1 to the standard deviation of demand 2. 
Then the safety stock cost reduction percentage 
function (CR%): 
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is used as the demand grouping criterion. 
 
2.2.2 Greedy algorithm 

 Figure 1 shows the procedure flow of the 
Greedy algorithm. 
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Figure 1 Flow of the Greedy algorithm 

 
Theorem 2.3: Optimality conditions of the Greedy 
algorithm for n demand sources combinations 
If the optimal solution has separated aggregate 
groups that: 

a. any pair within an aggregate group has a 
positive CR, (CR>0); and 

b. any pair formed by members from 
different aggregate groups has a negative 
CR, ( 0≤CR ); 

then, the solution provided by the Greedy algorithm 
would be optimal.  
 



2.2.3 Grasping algorithm 
Figure 3 shows the procedure flow of the 

Grasping algorithm. 
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Figure 3 Flow of the Grasping algorithm 

 
2.2.4 Greatest Standard Deviation First (GSDF) 
algorithm 

Figure 4 shows the procedure flow of the 
GSDF algorithm. 
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Calculate S(X) for all demand sources 

Select the demand source with the largest S(X) 

For the selected source, calculate CR with 
each of the remaining sources 

None CR>0 ? 
Select the 
demand source 
with the next 
largest S(X) 

No demand source of
the next largest S(X) ? 

Yes 

No 

Yes 

Terminate 

No 

Aggregate the pair with the greatest CR among 

Select an appropriate α  

 
Figure 4 Flow of the Greatest Standard Deviation 

First (GSDF) algorithm 

2.2.5 Case study and summary of 
demand-grouping algorithm performances 

In this section, a set of real demand data from a 
semiconductor manufacturing firm is used for the 
verification and further evaluation of algorithms that 
has mentioned in the previous sections. The data is in 
spreadsheet format (Microsoft Excel). The 
algorithms are coded in VBA (Visual Basic for 
Application). The performances of proposed demand 
grouping algorithms are evaluated and compared. 

 
Some suggestions and guidelines are given for 

applying the proposed algorithms: 
 
1. In the case study, the Greedy algorithm seems to 

give a pretty good performance both in the 
optimality and the computing efficiency. 
However, the computing efficiency is 
drastically worsened as the number of demand 
sources increases. It is because as the number of 
demand sources increases, the total number of 
pairing increases. Hence, the Greedy algorithm 
is best to use when the number of demand 
sources is not too large. 

 
2. The computing efficiency of the Grasping 

algorithm is better than other algorithms 
especially when the number of demand sources 
is large. It is because the Grasping aggregate 
more than once for each stage of pairings. Thus, 
the Grasping algorithm is the best to use when a 
high efficiency of computing the combinatorial 
solution is required. 

 
3. The Greatest Standard Deviation First (GSDF) 

algorithm is worse than the other algorithms in 
the optimality because of the constraint on the 
size of the demand standard deviation. But, it 
may be appropriate to use when some targets of 
demand sources with large variability are 
pre-determined. These targets will be ch 

   
Researches on aggregation strategies for other 

cost models, such as capacity cost model, will be 
further carried out in the future research. 


