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Abstract

Over the years, different techniques have been
developed to address issues of continuous process
improvement during production. These techniques are
developed in different academic communities initiated by
different concerns. However, a common fate of these
techniques is the negligence by industrial practitioners. An
important reason was that the techniques’ unbearable
mathematical  sophistication had  diminished  their
applicability during the age of expensive computing
resources. Another reason was that these techniques seemed
to over-shoot the needs of the relatively simple business
model and manufacturing processes at that time. In the first
year of this project, we re-examine these techniques,
including Evolution Operations (EVOP) and Optimum
Experimental Design (OED) and Ridge Analysis (RA)
developed by the applied statistics community,
Perturbation-based Real-Time Optimization (PRTO) by
mathematics and control communities and Ordinal
Optimization (OO) techniques by the discrete-event control
community. After reviewing these methods, we propose an
integrated, comprehensive evolutionary optimization method
that can be easily applied in practice.

Keywords : Evolutionary Operations (EVOP) Planning,
Optimum Experimental Design (OED), Perturbation
Optimization (PO), Ordinal Optimization (OO)
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1. Introdution

Fast yield ramp-up is a critical factor to shorten the time
to market and thus raise the product values. Under the
concurrent engineering framework, product R&D activities
are aligned with manufacturability concerns in order to
ensure the robust product quality and speed up the
time-to-market process. Due to the increasing complexity of
R&D and manufacturing processes for modern hi-tech
products, such as semiconductor products and electronic
appliances, a recent trend is to divide the product values
roughly into three major elements: product design, product
manufacturing and product service. Instead of having a single
company responsible for the entire product life cycle,
different companies are now in charge at different stages of
the life cycle. Taiwan is a de facto manufacturing center
where companies’ core competences are mainly low
manufacturing costs and flexible production systems. In fact,
the modern manufacturing processes have become so
complicated that in addition to further lowering the
manufacturing cost, companies have increasingly focused
their efforts on raising the product values by products’ early
introduction to the market. To achieve this, yield ramping up
during the manufacturing stage becomes extremely
important.

As mentioned, concepts of manufacturing systems have
evolved over the years from divided functions within a
company to integrating a company’s efforts and resources
and now to a new business model with companies focusing
on different aspects of a product. The birth of this new
business model is due largely to the very different
characteristics of modern hi-tech products. Unlike
conventional commodities, hi-tech products usually have a
very short life cycle. To speed up the time-to-market process,
companies responsible for the product’s original design,
usually also being the product owners, have turned their back
on manufacturing issues. To shorten the time to market, they
seek reliable manufacturing companies as their business
partners to take care the manufacturing aspects of the product.
Very often, these companies release product designs that are
immature and untested and rely on their partners to refine the
design during the manufacturing stage. Therefore,
manufacturing companies nowadays have to provide a wide
spectrum of services that include proprietary IP’s for product
designs and manufacturing process development. TSMC,
Taiwan Semiconductor Manufacturing Company, has



championed such a foundry service model and enjoyed a
great success in the semiconductor sector. Many companies
of various sectors in Taiwan are following such a model and
intend to evolve from low-value-adding manufacturers to
high-value-adding manufacturing services providers.

To become a successful manufacturing services provider,
a speedy yield ramp-up during the early stage of
product/process development is critical by reasons
manifested earlier. Because of the increasing complexity of
modern manufacturing processes, to ramp up production
yield is no easy problem. A typical semiconductor fabrication
process consists of more than 300 steps. Too many possible
factors during the process could contribute to the low yield.
Nevertheless, no systematic solutions exist as far to this
problem. Even for a successful company like TSMC, the
yield ramp-up process remains to be a tedious,
time-consuming task of swarming process integration
engineers. Even though many techniques have been
developed over the years aiming to continuously improve
yield or product quality during the manufacturing stage, the
practitioners have mostly overlooked these techniques. It is
this project’s mission to take up again these techniques and to
develop an effective, systematic yield-ramp-up solution.
These techniques are developed by different research
communities but have a common goal: fo on-line
continuously optimize the process performance. They
include: evolutionary operations (EVOP), an on-line design
of experiment (DOE), technique first developed by Box, an
applied statistician, in 60’s [1]; Optimum Experimental
Design [2]; perturbation-based optimization techniques
[3]-[7] by Chemical process control researchers and
Mathematicians; and Ordinal Optimization methods [8][9] by
discrete-event control researchers. In this concise report,
we’ll investigate and compare these techniques. We then
propose an integrated, comprehensive evolutionary
optimization method that can be easily applied in practice.

2. Comparsion of on-line optimization methods

EVOP is an approach that simultaneously investigates
effects of two or three variables on the system’s output
performance. Statistical effects significances then serve as
the bases to determine the improvement strategies. As shown
in Fig. 1, two variables, temperature and flow rate, are
studied. An initial 2-level factorial experimental region is
first chosen. Effects are calculated and their significances are
checked after data is collected. “Replicate” data are
continuously collected until effects are found significant. In
the example, “yield" is the system response of concern and is
found higher at the lower level of the temperature and at the
higher level of the flow rate. To continuously improve the
yield, the next phase of experiment region is chosen. Such
steps are continued until the system performance is improved
to a desired level or the improvement is no longer significant.

Perturbation-based process optimization is another
technique used to on-line improve system performance. The
perturbation-based optimization method is to impose a
perturbing waveform onto a manipulating variable and use
the observed responded variation to apply a correction to the
average manipulating variable, x, as shown in Fig. 2. The

perturbing signal is a sine wave in Fig. 2. The observed
output, y, will respond a waveform embedded with noise.
Suppose that the output is continuously measured electrically.
Its correct waveform can be extracted from the noise by

multiplying a correlator over time: [, = jé yzdt .
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Figure 1 Evolutionary Operation (EVOP) procedure to
improve process yield

Since the integral [, is proportional to Jy/ox ,
information contained in /; can be thus used to feed back to
the controller, which in turn determines the adjustment to x.
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Figure 2 Perturbation-based continuous process improvement

As illustrated in the above example, the key idea of
perturbation-based technique is to perturb in order to
estimate Oy/0Ox . Adjustment is then made based on this

estimate. Over the years, this technique has been developed
into become a perturbation-based real-time optimization
(PRTO) techniques. In the literature, there are mainly three
types of perturbation-based PRTO methods: dynamic
integrated system optimization and parameter estimation,
linear adaptive on-line optimization and Quadratic Adaptive
On-line Optimization.

In the late 90’s, discrete-event control researchers
proposed an ordinal optimization method to more effectively
optimize discrete-event system performance through
simulation. Though the problem domain is very different
from the manufacturing process improvement problem, the
idea is strikingly similar. Let the system manipulating
variable be x, which is adjustable to optimize the system
output, and ¢, be the sample size. The sampling cost is then



the summation of ¢, over possible values of x, denoted by the
set X: >, xt, . The goal of ordinal optimization is then to

choose 7, for all possible values of x such that the total
sampling cost is minimized, subject to a restriction that the
process performance has to be improved to a certain degree

min) ¢,
LhoX

s.t. alignment probability > P"

where alignment probability is defined to represent the
confidence level that one can be assure how close the
resulted system performance is to the best possible
performance and P is a pre-determined confidence level.
Or one can formulate the optimization problem as to choose
t. such that the alignment probability is maximized, subject
to a limited sampling cost:

min [alignment probability]
t’(
st ) ot =T

where T is the sampling budget available. In this task, ordinal
optimization methods will be also studied rigorously and to
see how it fits in the process improvement problems.

Similar to Ordinal Optimization, the goal of optimum
experimental design (OED) is to maximize the robustness of
the empirical process model with a minimal number of
experimental runs. The so-called variance-optimal designs,
such as central composite designs and D-optimal designs, are
widely used to achieve this goal. After the empirical model is
built, the ridge analysis is then used to find the process
optimum. For example, the temperature and plasma power of
etcher affects the performance of critical dimension (CD).
The empirical model of this process can be expressed as
follows:

y = bO +blxl +b2'x2 +b12'x1x2 +bll'x12 -‘_bZZ‘)CZ2 (1)

where, y represents the response, CD performance; x; and ,x;
are the temperature and the plasma power. The Rridge
Analysis (RA) will then determine a direction (Ax;, Ax,) to
improve the CD performance.

We summarize comparison of above methodologies in
the following table:

Table 1 Comparison of on-line optimization methods
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Based on the comparison, we propose a methodology

combining concepts of OED/RA and OO.

3. Evolutionary Process Optimization through

In the typical semiconductor fabrication, factors in an
earlier process step affect the response of a later process step
by affecting the effects of factors at that later process step. As
shown in Fig 3, the temperature setting of PECVD indirectly
affects the post-etching CD by affecting the effects of the
plasma power and temperature of the etcher on the CD and
consequently on the final yield.

Plasma
Temperatu< ) CD
Temperatu
PECV Etcher

Figure 3  Effects of variables on CD

The empirical model for such a multi-step process can
be written as

y=by +byx; +byx, +b5xx, +b11x12 +b22x§ 2

+D13x,X5 + by3x5 x5

where x; is the PECVD temperature and the additional terms,
x;x; and x,x;, describe the indirect effect of PECVD
temperature on the CD through the etcher’s two major factors:
temperature and plasma power. In this research, we propose
an evolutionary experimental design to better estimate the
process improvement direction for such multi-step processes.

We first derive a measure to evaluate the confidence
region of the improvement path. With the confidence region
evaluation measure, we propose an R-optimum sequential
design procedure. Finally, we’ll show how the proposed
experimental design outperforms the conventional designs.

The issue now is to assure the accuracy of the estimated
improvement path attained by the ridge analysis. As shown
in Fig 4, ridge points on different radius form the ridge path,
i.e. the improvement path of the empirical model. The
objective is to statistically find the confidence interval of
these ridge points.

Design Ridge

cente

distance,R
Figure 4 Ridge points on various radius R

Using the Lagrange multiplier, g, the ridge point
(x,,x,,x,)ata given perimeter can be found by (3):
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(3) can be rewritten as (B—I)x=(1/2)b.

Using an inequality established by [12], we eventually
show that confidence region volume of the ridge point is
proportional to

‘ A ‘ 11 1
MR
where A is the diagonalized matrix of J and 4,, 4,, and 43,
are eigenvalues of J. And

“4)

J=(B-1)" V' (B-pI)

where V is
(x.v] > 'XSZ > x.v3 )'

the covariance matrix of ridge point

Base on the derivation above, |A"| is used as a new
experimental design criterion to enhance the confidence of
improvement path. With the criterion, we propose a
ridge-optimum sequential design, referred to as R-optimum
sequential design.

Back to the example of the semiconductor etching
process, an initial empirical model as equation (1) is built for
the etching process by a 3° factorial experimental. An
example of the initial ridge path estimated from the initial
model is shown in Figure 5.
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Figure 5 Initial ridge path for etching

Based on the initial ridge path, the initial design is
augmented by adding one design point to minimize the
confidence region of the initial ridge point. With the
augmented design point, a new empirical model is built and a
new ridge point is found. A new design point is then added
again to minimize the confidence region of the new ridge
point. To minimize the ridge-point confidence region, |A™[is
used as the measure. The design point that minimizes |A™'|
will be selected as the new experimental design point. Figure
6 illustrates this R-optimum design procedure.

Initial design

—P Fit response model

v

Find Ridge Path

!

Augment design to minimize [A7'|

Figure 6 R-optimum sequential design

Considering the previous example, the initial ridge path
in Figure 5 is now shown as the gray stars in the
3-dimentional space in Figure 7. The design is then
augmented first by adding a new design point (green point in
Figure 7). Model is then extended to the form of equation (2)
in order to estimate the indirect effect of the PECVD
temperature. A new ridge path is then found (green line in
Figure 7) based on the first augmented model. Red, blue and
purple paths in Figure 7 are three more paths found
evolutionarily by the R-optimum design procedure.

Figure 7 Evolutionary ridge paths by R-optimum
experimental design

4. Validation and Concluding Remarks

405 hypothetical models are used to evaluate the
performance of R-optimum sequential design. The design
region is restricted to [-1, 1]. With initial points fixed to 3°
factorial design points as the example above, we intend to
augment the model with four more design points. The
R-optimal design continuously augments the design one
point at a time. The proposed design is compared to two
types of D-optimal designs: one-by-one augmentation design
and 4-in-once augmentation design. The augmentation
procedure follows a basic exchange algorithm [1] for both R-
and D-optimum designs. Exchangeable candidates are the 3



factorial points. For each step of the augmentation,
candidates that can gain the information most (D-optimum
design) or reduce |A'| most (R-optimum design) would be
selected.

The distance between the estimated ridge path and the
true path is used to evaluate the performance of experimental
designs. The closer the distance, the better the performance.
Fig 7 shows the average distance of the three experimental
designs. It can be seen that the R-optimum design
outperforms both D-optimum designs.
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Fig 7. Average distance from the true ridge path of 405
models. 1: 4-in-once D-optimum.2: one-by-one augmentation
D-optimum and. 3: R-optimum design

In this research, it has been shown that the novel
R-optimum sequential design outperforms the conventional
D-optimal designs in terms of improvement path estimation.
The proposed design procedure can be applied to any
multi-step processes and can be very efficient for the
semiconductor yield ramp-up process.
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