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中文摘要 
為了可以在生產過程中即時而且持續的改善生產製

程，許多不同的技術已在過往陸續地被發展出來，這些技

術分別由不同學術領域的學者基於不同需求所發展出

來；然而遭到實務界的忽視卻是這些技術的共同的命運。

一個重要的理由是，這些技術往往需要複雜的數學理論與

計算，因為這些複雜的計算使得在計算機資源仍然相當昂

貴的年代，無法被應用於實際的問題上。另外一個理由

是，過去較簡易的企業經營模式與製造過程不需要如此複

雜的技術。在本計劃的第一年度中，我們重新檢視這些技

術，其中包括統計學者所發展出的演進作業程序技術與最

佳化實驗設計；由數學及控制學者所發展的擾動最佳化技

術；以及最近由離散事件控制學者所發展的排序最佳化技

術。我們也經由對這些技術的徹底了解，而發展並提出一

適用於實務界的整合演進最佳化方法。 

關鍵詞：演進作業程序 最佳化實驗設計 擾動最佳化 
排序最佳化 
Abstract 

Over the years, different techniques have been 
developed to address issues of continuous process 
improvement during production. These techniques are 
developed in different academic communities initiated by 
different concerns. However, a common fate of these 
techniques is the negligence by industrial practitioners. An 
important reason was that the techniques’ unbearable 
mathematical sophistication had diminished their 
applicability during the age of expensive computing 
resources. Another reason was that these techniques seemed 
to over-shoot the needs of the relatively simple business 
model and manufacturing processes at that time. In the first 
year of this project, we re-examine these techniques, 
including Evolution Operations (EVOP) and Optimum 
Experimental Design (OED) and Ridge Analysis (RA) 
developed by the applied statistics community, 
Perturbation-based Real-Time Optimization (PRTO) by 
mathematics and control communities and Ordinal 
Optimization (OO) techniques by the discrete-event control 
community. After reviewing these methods, we propose an 
integrated, comprehensive evolutionary optimization method 
that can be easily applied in practice. 
Keywords ： Evolutionary Operations (EVOP) Planning, 
Optimum Experimental Design (OED), Perturbation 
Optimization (PO), Ordinal Optimization (OO) 

 
1. Introdution 

Fast yield ramp-up is a critical factor to shorten the time 
to market and thus raise the product values. Under the 
concurrent engineering framework, product R&D activities 
are aligned with manufacturability concerns in order to 
ensure the robust product quality and speed up the 
time-to-market process. Due to the increasing complexity of 
R&D and manufacturing processes for modern hi-tech 
products, such as semiconductor products and electronic 
appliances, a recent trend is to divide the product values 
roughly into three major elements: product design, product 
manufacturing and product service. Instead of having a single 
company responsible for the entire product life cycle, 
different companies are now in charge at different stages of 
the life cycle. Taiwan is a de facto manufacturing center 
where companies’ core competences are mainly low 
manufacturing costs and flexible production systems. In fact, 
the modern manufacturing processes have become so 
complicated that in addition to further lowering the 
manufacturing cost, companies have increasingly focused 
their efforts on raising the product values by products’ early 
introduction to the market. To achieve this, yield ramping up 
during the manufacturing stage becomes extremely 
important. 

As mentioned, concepts of manufacturing systems have 
evolved over the years from divided functions within a 
company to integrating a company’s efforts and resources 
and now to a new business model with companies focusing 
on different aspects of a product. The birth of this new 
business model is due largely to the very different 
characteristics of modern hi-tech products. Unlike 
conventional commodities, hi-tech products usually have a 
very short life cycle. To speed up the time-to-market process, 
companies responsible for the product’s original design, 
usually also being the product owners, have turned their back 
on manufacturing issues. To shorten the time to market, they 
seek reliable manufacturing companies as their business 
partners to take care the manufacturing aspects of the product. 
Very often, these companies release product designs that are 
immature and untested and rely on their partners to refine the 
design during the manufacturing stage. Therefore, 
manufacturing companies nowadays have to provide a wide 
spectrum of services that include proprietary IP’s for product 
designs and manufacturing process development. TSMC, 
Taiwan Semiconductor Manufacturing Company, has 



 
championed such a foundry service model and enjoyed a 
great success in the semiconductor sector. Many companies 
of various sectors in Taiwan are following such a model and 
intend to evolve from low-value-adding manufacturers to 
high-value-adding manufacturing services providers. 

To become a successful manufacturing services provider, 
a speedy yield ramp-up during the early stage of 
product/process development is critical by reasons 
manifested earlier. Because of the increasing complexity of 
modern manufacturing processes, to ramp up production 
yield is no easy problem. A typical semiconductor fabrication 
process consists of more than 300 steps. Too many possible 
factors during the process could contribute to the low yield. 
Nevertheless, no systematic solutions exist as far to this 
problem. Even for a successful company like TSMC, the 
yield ramp-up process remains to be a tedious, 
time-consuming task of swarming process integration 
engineers. Even though many techniques have been 
developed over the years aiming to continuously improve 
yield or product quality during the manufacturing stage, the 
practitioners have mostly overlooked these techniques. It is 
this project’s mission to take up again these techniques and to 
develop an effective, systematic yield-ramp-up solution. 
These techniques are developed by different research 
communities but have a common goal: to on-line 
continuously optimize the process performance. They 
include: evolutionary operations (EVOP), an on-line design 
of experiment (DOE), technique first developed by Box, an 
applied statistician, in 60’s [1]; Optimum Experimental 
Design [2]; perturbation-based optimization techniques 
[3]-[7] by Chemical process control researchers and 
Mathematicians; and Ordinal Optimization methods [8][9] by 
discrete-event control researchers. In this concise report, 
we’ll investigate and compare these techniques. We then 
propose an integrated, comprehensive evolutionary 
optimization method that can be easily applied in practice. 
 
2. Comparsion of on-line optimization methods 

EVOP is an approach that simultaneously investigates 
effects of two or three variables on the system’s output 
performance. Statistical effects significances then serve as 
the bases to determine the improvement strategies. As shown 
in Fig. 1, two variables, temperature and flow rate, are 
studied. An initial 2-level factorial experimental region is 
first chosen. Effects are calculated and their significances are 
checked after data is collected. “Replicate” data are 
continuously collected until effects are found significant. In 
the example, “yield" is the system response of concern and is 
found higher at the lower level of the temperature and at the 
higher level of the flow rate. To continuously improve the 
yield, the next phase of experiment region is chosen. Such 
steps are continued until the system performance is improved 
to a desired level or the improvement is no longer significant. 

Perturbation-based process optimization is another 
technique used to on-line improve system performance. The 
perturbation-based optimization method is to impose a 
perturbing waveform onto a manipulating variable and use 
the observed responded variation to apply a correction to the 
average manipulating variable, x, as shown in Fig. 2. The 

perturbing signal is a sine wave in Fig. 2. The observed 
output, y, will respond a waveform embedded with noise. 
Suppose that the output is continuously measured electrically. 
Its correct waveform can be extracted from the noise by 
multiplying a correlator over time: ∫= t

t yzdtI 0 . 
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Figure 1 Evolutionary Operation (EVOP) procedure to 

improve process yield 
 
Since the integral It is proportional to xy ∂∂ / , 

information contained in It can be thus used to feed back to 
the controller, which in turn determines the adjustment to x. 
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Figure 2 Perturbation-based continuous process improvement 

 
As illustrated in the above example, the key idea of 

perturbation-based technique is to perturb in order to 
estimate xy ∂∂ / . Adjustment is then made based on this 
estimate. Over the years, this technique has been developed 
into become a perturbation-based real-time optimization 
(PRTO) techniques. In the literature, there are mainly three 
types of perturbation-based PRTO methods: dynamic 
integrated system optimization and parameter estimation, 
linear adaptive on-line optimization and Quadratic Adaptive 
On-line Optimization. 

In the late 90’s, discrete-event control researchers 
proposed an ordinal optimization method to more effectively 
optimize discrete-event system performance through 
simulation. Though the problem domain is very different 
from the manufacturing process improvement problem, the 
idea is strikingly similar. Let the system manipulating 
variable be x, which is adjustable to optimize the system 
output, and tx be the sample size. The sampling cost is then 



 
the summation of tx over possible values of x, denoted by the 
set X: ∑ ∈Xx xt . The goal of ordinal optimization is then to 
choose tx for all possible values of x such that the total 
sampling cost is minimized, subject to a restriction that the 
process performance has to be improved to a certain degree 

 
∑
X

xt
t

x

min  

s.t. alignment probability ≥ P* 
 

where alignment probability is defined to represent the 
confidence level that one can be assure how close the 
resulted system performance is to the best possible 
performance and P* is a pre-determined confidence level. 
Or one can formulate the optimization problem as to choose 
tx such that the alignment probability is maximized, subject 
to a limited sampling cost: 

 
y]probabilit [alignment min

xt
 

s.t. ∑ ∈Xx xt =T 
 

where T is the sampling budget available. In this task, ordinal 
optimization methods will be also studied rigorously and to 
see how it fits in the process improvement problems. 

Similar to Ordinal Optimization, the goal of optimum 
experimental design (OED) is to maximize the robustness of 
the empirical process model with a minimal number of 
experimental runs. The so-called variance-optimal designs, 
such as central composite designs and D-optimal designs, are 
widely used to achieve this goal. After the empirical model is 
built, the ridge analysis is then used to find the process 
optimum. For example, the temperature and plasma power of 
etcher affects the performance of critical dimension (CD). 
The empirical model of this process can be expressed as 
follows: 
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where, y represents the response, CD performance; x1 and ,x2 
are the temperature and the plasma power. The Rridge 
Analysis (RA) will then determine a direction (∆x1, ∆x2) to 
improve the CD performance. 

We summarize comparison of above methodologies in 
the following table: 
 

Table 1 Comparison of on-line optimization methods 
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EVOP  ♦ ♦  ♦  
RTO ♦ ♦  ♦  ♦ 
OO ♦  ♦   ♦ 
OED/RA  ♦ ♦  ♦  

 
Based on the comparison, we propose a methodology 

combining concepts of OED/RA and OO.  
 
3. Evolutionary Process Optimization through  

In the typical semiconductor fabrication, factors in an 
earlier process step affect the response of a later process step 
by affecting the effects of factors at that later process step. As 
shown in Fig 3, the temperature setting of PECVD indirectly 
affects the post-etching CD by affecting the effects of the 
plasma power and temperature of the etcher on the CD and 
consequently on the final yield.  
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Figure 3  Effects of variables on CD 

 
The empirical model for such a multi-step process can 

be written as 
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where x3 is the PECVD temperature and the additional terms, 
x1x3 and x2x3, describe the indirect effect of PECVD 
temperature on the CD through the etcher’s two major factors: 
temperature and plasma power. In this research, we propose 
an evolutionary experimental design to better estimate the 
process improvement direction for such multi-step processes. 

We first derive a measure to evaluate the confidence 
region of the improvement path. With the confidence region 
evaluation measure, we propose an R-optimum sequential 
design procedure. Finally, we’ll show how the proposed 
experimental design outperforms the conventional designs. 

The issue now is to assure the accuracy of the estimated 
improvement path attained by the ridge analysis.  As shown 
in Fig 4, ridge points on different radius form the ridge path, 
i.e. the improvement path of the empirical model. The 
objective is to statistically find the confidence interval of 
these ridge points.  
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Figure 4 Ridge points on various radius R 
 
Using the Lagrange multiplier, µ, the ridge point 

( 1sx , 2sx , 3sx ) at a given perimeter can be found by (3): 
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(3) can be rewritten as (B−I)x=(1/2)b. 

Using an inequality established by [12], we eventually 
show that confidence region volume of the ridge point is 
proportional to 

321

1 111
λλλ

=Λ−  (4) 

where Λ is the diagonalized matrix of J and λ1, λ2, and λ3, 
are eigenvalues of J. And 
 

J=(B-µI)TV-1(B-µI) 
 
where V is the covariance matrix of ridge point 
( 1sx , 2sx , 3sx ). 

Base on the derivation above, |Λ-1| is used as a new 
experimental design criterion to enhance the confidence of 
improvement path. With the criterion, we propose a 
ridge-optimum sequential design, referred to as R-optimum 
sequential design. 

Back to the example of the semiconductor etching 
process, an initial empirical model as equation (1) is built for 
the etching process by a 32 factorial experimental. An 
example of the initial ridge path estimated from the initial 
model is shown in Figure 5. 

 
Figure 5 Initial ridge path for etching 

 
Based on the initial ridge path, the initial design is 

augmented by adding one design point to minimize the 
confidence region of the initial ridge point. With the 
augmented design point, a new empirical model is built and a 
new ridge point is found. A new design point is then added 
again to minimize the confidence region of the new ridge 
point. To minimize the ridge-point confidence region, |Λ-1|is 
used as the measure. The design point that minimizes |Λ-1| 
will be selected as the new experimental design point. Figure 
6 illustrates this R-optimum design procedure. 
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Figure 6 R-optimum sequential design 

 
Considering the previous example, the initial ridge path 

in Figure 5 is now shown as the gray stars in the 
3-dimentional space in Figure 7. The design is then 
augmented first by adding a new design point (green point in 
Figure 7). Model is then extended to the form of equation (2) 
in order to estimate the indirect effect of the PECVD 
temperature. A new ridge path is then found (green line in 
Figure 7) based on the first augmented model. Red, blue and 
purple paths in Figure 7 are three more paths found 
evolutionarily by the R-optimum design procedure.  

 
Figure 7 Evolutionary ridge paths by R-optimum 

experimental design 
 
4. Validation and Concluding Remarks 

405 hypothetical models are used to evaluate the 
performance of R-optimum sequential design. The design 
region is restricted to [-1, 1]. With initial points fixed to 32 
factorial design points as the example above, we intend to 
augment the model with four more design points. The 
R-optimal design continuously augments the design one 
point at a time. The proposed design is compared to two 
types of D-optimal designs: one-by-one augmentation design 
and 4-in-once augmentation design. The augmentation 
procedure follows a basic exchange algorithm [1] for both R- 
and D-optimum designs. Exchangeable candidates are the 33 



 
factorial points. For each step of the augmentation, 
candidates that can gain the information most (D-optimum 
design) or reduce |Λ-1| most (R-optimum design) would be 
selected.  

The distance between the estimated ridge path and the 
true path is used to evaluate the performance of experimental 
designs. The closer the distance, the better the performance. 
Fig 7 shows the average distance of the three experimental 
designs. It can be seen that the R-optimum design 
outperforms both D-optimum designs.  
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Fig 7. Average distance from the true ridge path of 405 

models. 1: 4-in-once D-optimum.2: one-by-one augmentation 
D-optimum and. 3: R-optimum design  

 
In this research, it has been shown that the novel 

R-optimum sequential design outperforms the conventional 
D-optimal designs in terms of improvement path estimation. 
The proposed design procedure can be applied to any 
multi-step processes and can be very efficient for the 
semiconductor yield ramp-up process. 
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