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Abstract 
Information about particle size distribution of river bed materials is essential for hydraulic 
modeling, sediment transport simulation, and physical habitat assessment. To determine 
the impact of sediment supply on the downstream from the sediment bypass tunnel, the 
particle size of bed materials must be continuously monitored. Classic methods, including 
grid sampling, transect sampling, and volumetric sampling, are used to determine particle 
size; however, investigating many sites over a short term and obtaining information about 
the spatial distribution is difficult. To deal with these difficulties, the effectiveness of 
using image processing techniques or high resolution topographic data products has been 
recently reported. However, the range of particle sizes, shapes, and packing structures 
limit the applicability of these methods. This study proposes an artificial neural network 
(ANN) model to estimate particle size of gravel and sand from unmanned aerial vehicles 
(UAV) photographs and digital elevation models (DEMs), with improved estimation 
accuracy. The proposed model yielded a mean error of approximately −0.7 mm when 
compared with the actual observation data. 
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1 Introduction 

River bed materials result in a diverse river environment. The properties of the river bed 
materials affect various river characteristics, including the amount and type of vegetation 
and the stream of the river. Building dams for water storage, flood control, or power 
production results in the prevention of downstream sediment transport, which leads to 
various problems, including the development of coarse grains and river bed armoring 
(Erskine, 1985). Further, a previous study has reported that the coastal erosion is 
dependent on the prevention of upstream sedimentation (Uda, 1993). Currently, the 
sediment that is trapped behind dams is planned to be released downstream, with the 
usage of sediment bypass tunnels (SBTs) considered to be one of the most effective 
methods for accomplishing this task. The sediment supply from dams result in the 
improvement of the water quality (Akiyama, 2012), the creation of a diversified physical 
environment (Fukuda et al. 2012), the nourishment of the beach, and a solution to the 
problems that have been briefly mentioned above. To understand these effects, it is 
important to monitor the changes in the river bed materials. 



Grid sampling, transect sampling, and volumetric sampling are the methods that are 
extensively used to investigate the river bed materials. These methods represent the visual 
observation approaches that are used for evaluating and determining the grain size 
through field sampling and analyses. Therefore, it is difficult to investigate several sites 
over a short period of time and to obtain information related to the spatial distribution of 
the grain size.  

Recently, methods of investigation using image processing techniques have been 
developed. Detert and Weitbrecht (2012) indicated that the detection techniques that are 
applied to analyze the digital top-view photographs of the gravel layer surface were 
effective for estimating the grain size. However, the range of particle sizes, shapes, and 
packing structures limit the applicability of these techniques (Pearson et al., 2017).  

Further, the digital elevation models (DEMs) that use the fine-resolution images collected 
using the unmanned aerial vehicles (UAV) can be easily used for image processing 
because of the development of survey technology. Pearson et al. (2017) denoted that the 
analysis of surface roughness based on the high resolution topographic surveys can 
predict the representative grain diameter in the river bed. 

Furthermore, the estimation skills, especially while using artificial neural networks 
(ANNs), have made remarkable progress because of the advancements in computer 
performance. The application of ANN to various technologies has been studied in the 
context of river engineering as well as other engineering. For instance, Casado et al. 
(2015) indicated that the hydromorphological features can be identified by ANNs based 
on the UAV photographs. One of the advantages of ANNs is their ability to perform 
estimation by successfully processing multiple information sources.  

The objective of this study is to obtain the spatial information associated with the particle 
size of the river bed gravel and sand from the UAV photographs and DEMs using an 
ANN model.  

2 Methods and study site 

The Koshibu River is a tributary to the Tenryu River in the Southern Japanese Alps, 
draining in a 295-km2 catchment in the Nagano Prefecture. The physical landscape of the 
basin is the median tectonic line across the center of the basin, which is dominated by the 
colluvium deposits. The current climatic conditions are typical of humid continental, and 
relatively warm summer weather. The average annual precipitation is approximately 1400 
mm, including approximately 20 mm of annual snow precipitation from December to 
March. Further, the high-magnitude flood discharges are mostly related to the weather 
fronts, typhoons, and low pressure systems, which typically occur from June to October.  

The study area comprises a 250-m long and 50-m wide river, which is 1.8 km downstream 
from the Koshibu Dam and immediately upstream from the foot protection work. The 



SBT of the Koshibu Dam was completed in 2016 and has been tentatively used since then. 
The design maximum discharge from this tunnel is 370 m3/s, and the annual sediment 
supply from the tunnel was approximately 10,000 m3 in 2017. The field observations in 
this study were conducted in August 2018 in sunny conditions.  

2.1 Grid sampling 
A 15-grid sampling dataset was collected from the study area (Fig. 1). The sample 
locations were selected to be representative of the dominant sediment faces. Each grid 
sampling site comprised 100 grains collected from a 2 × 2 m frame containing 0.2 × 0.2 
m grids (Fig. 2). The averaged sediment size (Dm) can be defined as the geometric mean 
of the lengths of the large (a), intermediate (b), and short axes (c) (Eq. [1]). 

 𝐷𝐷𝑚𝑚 = √𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐3
 [1] 

2.2 UAV surveys 
The study area was photographed using a small digital camera (12.4-megapixel X3-
FC350) mounted on a DJI Inspire 1 UAV at an altitude of 30 m above the ground level. 
Photograph acquisition was conducted at the original resolution of 13 mm per pixel, and 
the forward and side overlaps were greater than 60%.  

A total of 12 ground control points (GCPs) were preselected before conducting the UAV 
survey, ensuring that they were positioned at relatively equal intervals (Fig. 1). The GCP 
sheet was constructed from a thin black and white checkered pattern, and the points were 
surveyed using a real-time kinematic global positioning system.  

 
Fig. 2: The quadrat used for grid sampling 

 
Fig. 1: Orthophoto of the study site from the UAV photographs with grid sampling sites and GCPs No. 



The images were imported into the photogrammetry software (Agisoft PhotoScan) and 
processed to create a 20-mm resolution orthophoto and a DEM with a 20-mm resolution; 
all the images were obtained using the GCPs by referencing to a local coordinate system.  

2.3 ANN models  
In this study, a deep convolutional neural network (DCNN), which is a class of ANN 
algorithms, was used to estimate the size of the river bed particles. The workflow is 
depicted in Fig. 3(a), and the flow diagram of our DCNN process and the predicting 
workflow are presented in Figs. 3(b) and (c), respectively. Three models, which represent 
a photo model (P-model), a DEM model (D-model), and both the models (B-model), were 
constructed for comparing the effectiveness of the input data originally obtained from the 
orthophoto and DEM. The architecture of DCNN process was built using double 
convolutional layers followed by batch normalization, a max pooling operation, and the 
usage of two dense layer classifiers. The first and second convolutional layer filters were 
32 channels with 3 × 3 kernel and 64 channels with 3 × 3 kernel, respectively. Dropout 
was performed in the convolutional layer and the first dense layer with a dropout 
probability of 0.2 to avoid overfitting. The output of two convolutional layers and a dense 
layer were passed through nonlinearity, such as the rectified linear unit (ReLU), as 
expressed by Eq. [2].  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥, 0), [2] 

where max denotes the maximum value of the function. To construct the model, Keras 
framework (Cholet, 2015) with Tensorflow (Abadi et al., 2016) backend was used.   

The summary of the input data is presented in Tab. 1. The saturation and the value data 
obtained from the orthophoto were used as the input data from the photo. The hue data 

 
 
 

 
Fig. 3: General workflow for estimating the grain size: (a) training workflow of the ANN model; (b) 

DCNN process; and (c) prediction of the workflow 

 



was not used because majority of the sediments on the study site were almost entirely 
black and white. Other input data were derived from the DEM data. The cross-sectional 
normalized elevation (ZC) was defined as the difference between the elevation and the 
cross-sectional mean divided by the cross-sectional standard deviation. These data were 
expected to reveal the effect of sediment sorted by the river flow. The moving standard 
deviation of elevation (σMz) was derived using a 20 × 20 mm kernel size filter. The 
Laplacian of the elevation (La) was used to measure the surface curvature, which was 
calculated using 3 × 3 DEM subgrids and a conventional four-neighborhood 3 × 3 
Laplacian filter, which can be expressed in the following form (Iwahashi et al., 2009): 

 𝐿𝐿𝑒𝑒 = 4𝑍𝑍𝐶𝐶𝐶𝐶 − (𝑍𝑍𝐶𝐶𝐶𝐶 + 𝑍𝑍𝐶𝐶𝐶𝐶 + 𝑍𝑍𝐶𝐶𝐶𝐶 + 𝑍𝑍𝐶𝐶ℎ), [3] 

where the subscripts b through h indicate the grid layout defined in Fig. 4. The difference 
between the elevation and the moving averaged elevation derived as 20 × 20 mm was 
used to indicate the roughness characteristics of the gravel. The slope inclination (I) of 
the moving averaged elevation (20 × 20 mm (ZM)) can be expressed as follows:  

where the subscripts a through i are the same as those presented in Fig. 4.  

A total of 1,500 particle diameters obtained from 15 grid sampling sites were used as the 
training data. The data from one of those sites data (100 particle diameters) were used as 
the test data, and 10% of the remaining data (140 particle diameters) were used as the 
validation data. This technique was repeated 15 times as k-fold cross validation, and the 
models were trained using a predefined number of epochs (80). The model accuracy was 

Tab. 2:      Mean Error and standard deviation (S. D.) 
between the predicted and observed grain 
sizes  

 

 

Fig. 4:       The DEM grid layout  

Tab. 1:      Input data for each model. P, D, and B 
represent the P-model, D-model, and 
B-model, respectively 

 

 
𝑆𝑆𝑥𝑥 =

𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀 − (𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀)
6𝑑𝑑𝑥𝑥  

[4] 

 
𝑆𝑆𝑦𝑦 =

𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀𝑀𝑀 − (𝑍𝑍𝑀𝑀𝑀𝑀 + 𝑍𝑍𝑀𝑀ℎ + 𝑍𝑍𝑀𝑀𝑀𝑀)
6𝑑𝑑𝑦𝑦  [5] 

 𝐼𝐼 = �𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2, [6] 



evaluated using the mean of the 15 model scores. To estimate the particle diameter 
without the grid sampling sites, the ensemble mean of all the models was used. 

The training, test, and validation data were normalized against varying contrast, which 
considerably aided the transferability of the trained ANN model. The normalized data 
(Xʹ) was calculated from the non-normalized data (X) using 

 𝑋𝑋′ = 𝑋𝑋
255 and [7a] 

 𝑋𝑋′ =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

, [7b] 

where Eq. [7a] was the form for the data obtained by orthophoto, Eq. [7b] was the form 
for the data obtained by DEM, and μ and 𝜎𝜎  were the mean and standard deviation, 
respectively (Palafox et al., 2017). 

3 Results 

Tab. 2 presents the performance accuracy of each model. The mean error indicates the 
mean of the difference between the test data estimation by model and the observation. 
The estimation performed using the D-model was observed to be the most accurate, which 
was followed by the P-model and the B-model. The standard deviation, which is 
indicative of the dispersion of difference, indicated the same trend as that indicated by 
the mean results. The decrease in model accuracy using both orthophoto and DEM for 
the input was caused because of insufficient tuning of the model parameters. Hence, the 
B-model has the potential to provide considerable insight into the estimation. 

The composite particle size distribution curves using the data obtained from 15 sites for 
each of the three models and observations are depicted in Fig. 5. Each model provided 
characteristics related to the particle size distribution because the distribution curve 
estimated by each model exhibited a similar trend to that associated with the actual 
observations. The difference between the 20% particle size (D20) of three models 

 
Fig. 5: Composite of the particle size distribution curve at 15 sites by model estimations and observation. 

Green, blue, magenta, and black solid lines represent the P-model, D-model, B-model, and 
observation particle diameters, respectively. 



estimation and the actual observations was approximately 140%–330% of the observed 
D20, whereas that of the 80% particle size (D80) was approximately 10%–20%. The 
estimation accuracy of the large particles was higher than that of the small particles.  

Using these models, the particle size of the river bed gravel and sand was estimated over 
the entire study area. In this study, the spatial distribution of the particle size that is 
estimated using only the D-model, which provided the best accuracy among three models, 
is presented in Fig. 6 because of the page limit. The planted and water portions have been 
removed before being inputted into the model. The estimation of the particle diameter 
was affected by the terrain such as the differences in elevation and steepness. There are 
large gravel diameters (>128 mm) along the water course and the area of the low ZC 
because large sediments would accumulate on the water course owing to large bed shear 
stress (Kuroda et al., 2005).  

4 Conclusions 

In this study, a model for estimating the particle size based on ANN has been proposed 
for orthophoto and DEMs obtained from the UAV photographs. The following is a brief 
summary of the conclusions: 

・the ANN models proposed in this study was used to estimate the diameter of the river 
bed particles with a mean error of approximately −0.7 mm and a mean standard 
deviation of approximately 16.3 mm.  

・the composite particle size distribution curve obtained using the ANN models exhibited 
a trend similar to that obtained using the actual observations; 

 
 

 
Fig. 6: (a) Cross-sectional normalized elevation and (b) grain size estimated by D-model 

(a) 

(b) 



・the spatial distribution of particle sizes can be obtained using the ANN models. This 
represents the sediment classification tendency based on flow. 

References 
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M et al (2016) Tensorflow: a system for 

large-scale machine learning. In OSDI, 16:265-283 

Akiyama, T (2012). Management of sedimentation and turbid water at the Asahi dam. Proc. Hydro, 
Session 17, pp 1-8.  

Casado, M. R., Gonzalez, R. B., Kriechbaumer, T., Veal, A. (2015). Automated identification of river 
hydromorphological features using UAV high resolution aerial imagery. Sensors, 15(11), 27969–
27989. 

Cholet, F. (2015). keras. https://kerasio 

Erskine, W. D. (1985): Downstream geomorphic impacts of large dams: the case of Glenbawn Dam, 
NSW, Applied Geography, Vol. 5, pp. 195-210. 

Fukuda, T., Yamashita, K., Osada, K., Fukuoka, S. (2012). Study on Flushing Mechanism of Dam 
Reservoir Sedimentation and Recovery of Riffle-Pool in Downstream Reach by a Flushing 
Bypass Tunnel. International Symposium on Dams for a Changing World, Kyoto, Japan. 

Iwahashi, J., Kamiya, I., Yamagishi, H. (2009): Estimation of the most suitable window size of the slope 
gradient and convexo-concave index for the assessment of shallow landslides using high-
resolution LiDAR DEM. Transactions, Japanese Geomorphological Union, 30-1, pp. 15-27. 

Kuroda, Y., Fukuoka, S., Yamamoto, T., Yoshida, K., Iuchi, T. (2005). Formation mechanism of gravel 
bed rivers and its characteristics of grain size distribution. Advances in River Engineering, Vol. 
11 (June 2005), 363–368. 

Martín, E. J., Doering, M., Robinson, C. T. (2015). Ecological effects of sediment bypass tunnels. 
International Workshop on Sediment Bypass Tunnels, 147–156. 

Palafox, L. F., Hamilton, C. W., Scheidt, S. P., Alvarez, A. M. (2017). Automated detection of geological 
landforms on Mars using Convolutional Neural Networks. Computers and Geosciences, 
101(January), 48–56. 

Pearson, E., Smith, M. W., Klaar, M. J., & Brown, L. E. (2017). Can high resolution 3D topographic 
surveys provide reliable grain size estimates in gravel bed rivers? Geomorphology, 293(May), 
143–155. 

Uda, T. (1993). Coastal Erosion in Japan. Summer conference on hydraulic engineering, B-3-1 – B-3-
20. 

Authors  

Daiki Takeuchi (corresponding Author) 
Satoru Nakanishi 
River and Dam Hydraulic Research Team, Hydraulic Research Group, Public Works 
Research Institute (PWRI), Japan 
Email: takeuchi-d573bs@pwri.go.jp 


	An artificial neural network model to estimate grain size on a river bed             from UAV photographs and DEMs
	1 Introduction
	2 Methods and study site
	2.1 Grid sampling
	2.2 UAV surveys
	2.3 ANN models

	3 Results
	4 Conclusions

