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Abstract. We justify some characterizations of the ground states of spin-1
Bose-Einstein condensates exhibited from numerical simulations. For ferromag-

netic systems, we show the validity of the single-mode approximation (SMA).

For an antiferromagnetic system with nonzero magnetization, we prove the
vanishing of the mF = 0 component. In the end of the paper some remaining

degenerate situations are also discussed. The proofs of the main results are all

based on a simple observation, that a redistribution of masses among different
components will reduce the kinetic energy.

1. Introduction. At ultra low temperature, massive bosons could occupy the same
lowest-energy state and form the so-called Bose-Einstein condensates (BECs). This
phenomenon was predicted by Bose and Einstein in 1925, and was first realized on
several alkali atomic gases in 1995 by laser cooling technique [1, 7, 11]. In early
experiments, the atoms were confined in magnetic traps. In this situation the spin
degrees of freedom are frozen. Through the mean-field approximation the system is
then described by a scalar wave function, which satisfies the Gross-Pitaevskii (GP)
equation [10, 15, 24]. In contrast, in an optically trapped atomic BEC all hyperfine
spin states can be active simultaneously, and a spin-F BEC is then described by
a vector wave function Ψ = (ψF , ψF−1, · · · , ψ−F )T , where the j-th component
corresponds to the mF = j hyperfine state [27, 28, 22, 4, 14]. The theory of such
spinor BEC was first developed independently by several groups [23, 16, 18]. After
these early studies, spinor BEC has become an area of great research interest.
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1.1. Mathematical model for spin-1 BEC. For a spin-1 BEC, the vector wave
function Ψ = (ψ1, ψ0, ψ−1)T satisfies a generalized GP equation:

i~∂tΨ =
δE

δΨ∗
, (1)

where the Hamiltonian is given by

E[Ψ] :=

∫
D

{
~2

2ma

∑
j

|∇ψj |2 + V (x)|Ψ|2 +
cn
2
|Ψ|4 +

cs
2
|Ψ∗SΨ|2

}
dx.

Here D is a domain in Rd, ~ is the reduced Planck constant, ma is the atomic mass,
V is a locally bounded real-valued function representing the trap potential, Ψ∗ is
the Hermitian of Ψ, and S = (Sx, Sy, Sz) is the triple of spin-1 Pauli matrices:

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , Sz =

 1 0 0
0 0 0
0 0 −1

 .

So Ψ∗SΨ denotes the vector (Ψ∗SxΨ,Ψ∗SyΨ,Ψ∗SzΨ). Also note that |Ψ| denotes

the Euclidean length (
∑
j |ψj |2)1/2, and similiarly for |∇ψj | and |Ψ∗SΨ|. The pa-

rameters cn and cs are real constants given by

cn =
4π~2

3ma
(a0 + 2a2), cs =

4π~2

3ma
(−a0 + a2),

where a0 and a2 are respectively the s-wave scattering lengths for scattering channels
of total hyperfine spin zero and spin two. The parameter cn characterizes the
spin-independent interaction, and the parameter cs characterizes the spin-exchange
interaction. For cn < 0 (resp. cn > 0), the spin-independent interaction is attractive
(resp. repulsive). For cs < 0 (resp. cs > 0), the spin-exchange interaction is
ferromagnetic (resp. antiferromagnetic). Typical examples of ferromagnetic and
antiferromagnetic systems are 87Rb and 23Na condensates.

The generalized GP equation (1) implies two conserved quantities:

(C1)

∫
D

|Ψ|2 = N,

(C2)

∫
D

(
|ψ1|2 − |ψ−1|2

)
= M,

where N is the total number of atoms and M is the total magnetization. For the
system to be nontrivial, we assume N > 0. We also assume |M | < N (note that
obviously |M | ≤ N), for if |M | = N the system reduces to a single component BEC,
which is a trivial case for all considerations in this work. Now we say Ψ is a ground
state if it is a minimizer of E under the above two constraints.

1.2. Innovation and organization. In researches concerning ground states of
spin-1 BEC, the following ansatz was often adopted:

ψj = γjψ for each j, (2)

where γj are constants and ψ is a function independent of j. This is called the single-
mode approximation (SMA) in the physics literature [18, 13, 26, 17, 25, 12]. It has
been found [29] from numerical simulations that ground states obey the SMA exactly
for ferromagnetic systems (and does not in general for antiferromagnetic ones), and
hence can effectively be characterized as one-component systems. The first goal
of this paper is to analytically confirm this observation. On the other hand, for
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antiferromagnetic systems, we will show that ψ0 ≡ 01 when M 6= 0, another well-
known phenomenon from numerical simulations [3, 9] not being rigorously proved
before. For the degenerate case M = 0, however, the SMA is again valid while
ground states are not unique, and ψ0 does not necessarily vanish. It’s interesting
that although the two phenomena (SMA and vanishing of ψ0) look quite irrelevant
to each other, they can be proved by the same simple principle, that a redistribution
of masses between different components will decrease the kinetic energy.

The paper is organized as follows. Section 2 is the preliminary, where we reformu-
late the mathematical model more precisely, and then provide a result of maximum
principle which is crucial in justifying the expected characterizations. In Section
2.2 the idea of mass redistribution is introduced. Sections 3 and 4 treat respectively
the ferromagnetic and antiferromagnetic systems.

2. Preliminary. For notational simplicity, let’s redefine

E[Ψ] =

∫
D

{∑
j

|∇ψj |2 + V |Ψ|2 + cn|Ψ|4 + cs|Ψ∗SΨ|2
}
.

This causes no loss of generality for the phenomena we are going to investigate.
The admissible class is

C =
{

Ψ ∈
(
H1(D) ∩ L4(D) ∩ L2(D,V dx)

)3 ∣∣∣ Ψ satisfies (C1) and (C2)
}
,

where L2(D,V dx) consists of all functions f such that
∫
D
V |f |2 <∞. Let u denotes

(u1, u0, u−1). We also define

A = {u ∈ C | uj ≥ 0 for each j} ;

A1 = {u ∈ A | u = (γ1f, γ0f, γ−1f) for some constants γj and some function f} ;

A2 = {u ∈ A | u0 ≡ 0} .

Let’s also use γ to denote (γ1, γ0, γ−1), so that (γ1f, γ0f, γ−1f) can be abbreviated
as γf .

In Section 2.1, we introduce a common reduction which asserts that to study
ground states we can simply consider A instead of C. Indeed, A consists just the
amplitudes of elements in C. And A1 (resp. A2) corresponds to the set of all
elements obeying the SMA (resp. with vanishing zeroth components). For the
moment, we do not consider any boundary condition for simplicity. See the remark
after Theorem 3.1.

2.1. Reduction from C to A. Given Ψ ∈ C. Let uje
iθj be the polar form of ψj

for each j. Then, by formally2 differentiating the θj ’s, it’s easy to check that

E[Ψ] =

∫
D

{∑
j

(|∇uj |2 + u2
j |∇θj |2) + V |u|2 + cn|u|4

+ cs

[
2u2

0

(
u2

1 + u2
−1 + 2u1u−1 cos (θ1 − 2θ0 + θ−1)

)2
+ (u2

1 − u2
−1)2

]}
.

(3)

1 We use “f ≡ g” to stress f is “identically” equal to g. We shall also usually only use “=” for

equalities of functions later on, possibly in the sense of almost everywhere. There is no true point
to distinguish them in this paper.

2 The differentiation is formal since the fact that ψj ∈ H1 alone doesn’t imply we can choose

θj to be also of class H1. This is nevertheless possible by some “lifting” theorem. [5, 6]
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For Ψ to be a ground state, we thus require the following:

The θj ’s are constants and cos (θ1 − 2θ0 + θ−1) = ±1 for cs ≶ 0. (4)

And then

E[Ψ] =

∫
D

{∑
j

|∇uj |2 +V |u|2 + cn|u|4 + cs

[
2u2

0(u1±u−1)2 + (u2
1−u2

−1)2
]}
, (5)

where the plus-minus sign ± corresponds to cs ≶ 0.
Let’s now define E : A → R, E[u] is given by the right-hand side of (5). We use

G to denote the set of all minimizers of E over A. We will not rigorously establish a
correspondence between ground states and elements in G. For example, we will not
justify the validity of the differentiation of the θj ’s in (3). Also note that if some
component of a ground state Ψ vanishes, then (4) needs not be satisfied. Despite
these problems, we claim that the assertion “every ground state obeys the SMA
(2)” does be equivalent to “every element in G lies in A1.” Similarly, the assertion
that “every ground state Ψ has ψ0 ≡ 0” is equivalent to “every u in G lies in A2.”
We shall omit the proofs of these facts. (See [21].) Without loss of generality, we
henceforth consider E and G instead of the original model.

For convenience let’s use H to denote the integrand of E, i.e. E[u] =
∫
D
H(u).

We also write H = H1 +H2, where

H1(u) =
∑
j

|∇uj |2 + cs

[
2u2

0(u1 ± u−1)2 + (u2
1 − u2

−1)2
]
,

H2(u) = V |u|2 + cn|u|4.

This splitting of H is only for convenience of later discussion.
The Euler-Lagrange system for u ∈ G is given by the following coupled Gross-

Pitaevskii equations:
(µ+ λ)u1 = Lu1 + 2cs

[
u2

0(u1 ± u−1) + u1(u2
1 − u2

−1)
]

µu0 = Lu0 + 2csu0(u1 ± u−1)2

(µ− λ)u−1 = Lu−1 + 2cs
[
u2

0(u−1 ± u1) + u−1(u2
−1 − u2

1)
]
,

(6)

where L = −∆ + V + 2cn|u|2, and λ and µ are the Lagrange multipliers induced
by the constraints (C1) and (C2). We remark that in this paper we do not involve
ourselves in the problem of existence. To best illustrate the simplicity of our method,
we just assume there is a ground state. (See [20, 8, 2] for related concerns of existence
problem). Also note that u ∈ G is continuously differentiable by standard regularity
theorem.

The following lemma will be crucial in our characterizations of ground states.

Lemma 2.1. If u ∈ G, then for each j, either uj ≡ 0 or uj > 0 on all of D.

Proof. Let K be a compact subset of D. By subtracting respectively Qjuj , j =
1, 0,−1, from the three equations in (6) with large enough constants Qj , and using
the assumption uj ≥ 0, it’s easy to verify that each uj satisfies

∆uj + hjuj ≤ 0

for some function hj which is non-positive on K. Thus either uj > 0 or uj ≡ 0 on
K by the strong maximum principle. Since K ⊂ D is arbitrary, the assertion of the
lemma holds.
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2.2. A kinetic-energy-reducing redistribution. Consider an n-tuple of non-
negative functions f = (f1, f2, ..., fn) ∈ (H1(D))n. Let g = |f |. It’s well-known (see
e.g. [19], Theorem 7.8) that |∇g|2 ≤

∑
k |∇fk|2. In fact,

∑
k

|∇fk|2 − |∇g|2 =


1

g2

∑
j<k

|fj∇fk − fk∇fj |2 on where g > 0

0 on where g = 0.

(7)

This convexity inequality for gradients has a simple while interesting generalization,
when f2

1 , f
2
2 , . . . , f

2
n do not sum to a single g2, but instead are redistributed into

multiple parts. To be precise, we give the following definition.

Definition 2.2. Let f be as above, and let g = (g1, g2, ..., gm) be an m-tuple of
nonnegative functions. We say g is a square redistribution of f if

g2
` =

n∑
k=1

a`kf
2
k for ` = 1, 2, . . . ,m, (8)

where a`k are constants, a`k ≥ 0, and
∑m
`=1 a`k = 1 for each k = 1, 2, . . . , n.

Note that g = |f | is the only square redistribution of f for m = 1. In general we
have the following result.

Theorem 2.3. For any square redistribution g of f as in Definition 2.2, we have

(a) |g| = |f |,
(b)

∑m
`=1 |∇g`|2 ≤

∑n
k=1 |∇fk|2.

Proof. (a) follows by summing (8) over ` = 1, 2, . . . ,m. For fixed `, apply the
convexity inequality for gradients to the vector (

√
a`1f1,

√
a`2f2, . . . ,

√
a`kfk), we

obtain

|∇g`|2 ≤
n∑
k=1

a`k|∇fk|2.

And (b) follows by summing this inequality over ` = 1, 2, . . . ,m.

Remark. We can naturally generalize the idea to p-th power redistribution, which
may be useful in studying systems with p-Laplacian terms.

To save notation, in the following we shall omit the adjective “square” and simply
say “redistribution”. Since the square of the amplitude of a wave function represents
the distribution of its mass density, a redistribution of u ∈ A means a redistribution
of the masses between its three components. If u ∈ A and v = (v1, v0, v−1) is a
redistribution of u, Theorem 2.3 (a) says the shapes of their total mass distribution
are the same. In particular, v satisfies the first constraint (C1), and H2(v) = H2(u).
These facts together with (b), which causes a reduction of the kinetic energy, allow
us to give a simple and unified approach to our problems.

3. Ferromagnetic systems. In this section we assume cs < 0, and the goal is
to prove the validity of SMA, that is G ⊂ A1. The idea is to find, for u ∈ A,
a redistribution of u in A1 which has no larger energy than u, and then try to
conclude that u must itself be the redistributed element provided u ∈ G.
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Now given any u ∈ A. It’s easy to see that a redistribution of u lies in A1 if and
only if it can be expressed as γ|u|, where γ = (γ1, γ0, γ−1) is a triple of nonnegative
constants satisfying {

γ2
1 + γ2

0 + γ2
−1 = 1

γ2
1 − γ2

−1 = M/N.
(9)

Let Γ denote the set containing all such γ:

Γ :=
{
γ ∈ R3

∣∣ γj ≥ 0 for each j, γ satisfies (9)
}
.

Then

H1(γ|u|) = |∇|u||2 + csP (γ)|u|4,

where

P (γ) = 2γ2
0(γ1 + γ−1)2 +

M2

N2
.

For the redistributed γ|u| to have no larger energy than u, the best candidate is
obviously obtained by maximizing P (γ). It’s easy to check that

max
γ∈Γ

P (γ) = P (γ?) = 1,

where the maximizer γ? = (γ?1 , γ
?
0 , γ

?
−1) is uniquely given by

γ?1 =
1

2

(
1 +

M

N

)
, γ?0 =

√
1

2

(
1− M2

N2

)
, and γ?−1 =

1

2

(
1− M

N

)
.

We can now state our main theorem of this section.

Theorem 3.1. Assume cs < 0. If u ∈ G, then u = γ?|u|.

Proof. Since γ?|u| is a redistribution of u, H2(u) = H2(γ?|u|). Hence

H(u)−H(γ?|u|) = H1(u)−H1(γ?|u|) =: Dk +Ds,

where

Dk =
∑
j

|∇uj |2 − |∇|u||2 ≥ 0

by (7), and

Ds = cs
[
2u2

0(u1 + u−1)2 + (u2
1 − u2

−1)2
]
− cs|u|4 = −cs(u2

0 − 2u1u−1)2 ≥ 0.

However, u ∈ G, thus we must have Dk = Ds = 0. From (7), this occurs if and only
if

uj∇uk − uk∇uj = 0 for j 6= k ; (10)

u2
0 − 2u1u−1 = 0. (11)

Since we assume the total number of atoms N > 0, from Lemma 2.1, at least one
uj is strictly positive in D. Assume u1 > 0 on D, then (10) implies

∇ (u0/u1) = ∇ (u−1/u1) = 0. (12)

Since D is connected, (12) implies u0 and u−1 are both constant multiples of u1.
This shows u ∈ A1. The same conclusion holds obviously if u0 > 0 or u−1 > 0.
That u must be γ?|u| then follows either by (11) or by the fact that γ? is the unique
maximizer of P over Γ.
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Remark. We can add more assumptions in the definition of A for Theorem 3.1 to
hold. The only thing we need to take care is that we need γ?|u| ∈ A whenever u ∈ G,
so that E[u] ≤ E[γ?|u|] is not violated. For example, we can consider a homogeneous
boundary condition (e.g. homogeneous Dirichlet or Neumann boundary condition)
for u ∈ A, since then γ?|u| also satisfies the same condition.

Theorem 3.1 implies that searching for ground states of ferromagnetic spin-1
BEC can be reduced to a single-component minimization problem. Precisely, define
the single-component admissible class

As = {|u| | u ∈ A}
=
{
u ∈ H1(D) ∩ L4(D) ∩ L2(D,V dx)

∣∣ u ≥ 0,
∫
D
u2 = N

}
,

(13)

and define

Es[u] =
∫
D

{
|∇u|2 + V u2 + (cn + cs)u

4
}

for u ∈ As,
Gs = {u ∈ As | Es[u] = minv∈AsEs[v]} .

We have the following characterization.

Corollary. G = {γ?u | u ∈ Gs }.

Proof. If u ∈ G, then u = γ?|u| by Theorem 3.1. To see |u| ∈ Gs, note that

Es[|u|] = E[γ?|u|] ≤ E[γ?v] = Es[v]

for every v ∈ As. Conversely if u ∈ Gs, we want to show γ?u ∈ G. This is true
since

E[γ?u] = Es[u] ≤ Es[|v|] = E[γ?|v|] ≤ E[v]

for every v ∈ A.

4. Antiferromagnetic systems and some degenerate cases. The main focus
of this section is the phenomenon u0 ≡ 0. After justifying it in Section 4.1, some
degenerate situations are also discussed in Section 4.2.

4.1. Justification of the vanishing phenomenon. Assume cs > 0 in this sub-
section. We want to show that any ground state must have a vanishing zeroth
component. Similar to the approach in the previous section, we want to find an
appropriate redistribution ũ of u ∈ A so that ũ ∈ A2 and E[ũ] ≤ E[u]. Now, not
as before, the assumption ũ ∈ A2 alone doesn’t give rise to a definite hint for what
ũ should be. In view that such ũ satisfies |ũ| = |u| and hence (C1), as a guess, we
try just imposing the additional assumption that ũ also satisfies

ũ2
1 − ũ2

−1 = u2
1 − u2

−1,

so that (C2) is also satisfied by ũ automatically. This results in only one possibility,
that is

ũj =

√
u2
j +

u2
0

2
for j = 1,−1. (14)

It’s fortunate that it works.

Theorem 4.1. Assume cs > 0 and M 6= 0, then u ∈ G implies u0 = 0.
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Proof. For u ∈ A, let ũ ∈ A2 be its redistribution defined by (14). Then

H(u)−H(ũ) = Dk +Ds,

where

Dk =
∑
j

|∇uj |2 −
∑
j

|∇ũj |2 ≥ 0

by Theorem 2.3 (b), and

Ds = 2csu
2
0(u1 − u−1)2 ≥ 0.

by direct computation. Assume u ∈ G, then we must have

u2
0(u1 − u−1)2 = 0.

(That Dk = 0 is also true but is not needed here.) By Lemma 2.1, either u0 ≡ 0
or u1 ≡ u−1. However since we assume M 6= 0, we cannot have u1 ≡ u−1, and the
assertion follows.

4.2. Some degenerate situations. The requirement M 6= 0 in Theorem 4.1 is
necessary. In fact, for M = 0, SMA is again valid while ground states are not
unique, and u0 ≡ 0 is not necessarily the case. Precisely, consider the minimization
problem (recall that As is defined by (13))

min
v∈As

∫
D

{
|∇v|2 + V v2 + cnv

4
}
. (15)

We have the following characterization.

Proposition 4.2. If cs > 0,M = 0 or cs = 0, then

G =
{(
t,
√

1− 2t2, t
)
u
∣∣∣ 0 ≤ t ≤ 1/

√
2, u is a minimizer of (15)

}
.

Proof. Note that since M = 0, from (9), γ ∈ Γ implies

γ =
(
t,
√

1− 2t2, t
)

for some 0 ≤ t ≤ 1/
√

2.

Now it’s easy to see that for any u ∈ A and γ ∈ Γ we have

H(γ|u|) = |∇|u||2 + V |u|2 + cn|u|4.

Thus, H(γ|u|) is independent of γ ∈ Γ, and H(γ|u|) ≤ H(u) obviously. The proof
that u ∈ G implies u must be one of the γ|u| is much the same as in the proof of
Theorem 3.1, and we omit it.

In contrast to the above theorem, SMA is almost never the case when M 6= 0.

Proposition 4.3. Assume cs > 0 and M 6= 0, then u ∈ G ∩A1 implies u1 and u−1

are constants. And this is possible only if V is constant.

Proof. By Theorem 4.1, the Euler-Lagrange system (6) is reduced to the following
two-component system:{

(µ+ λ)u1 = Lu1 + 2csu1(u2
1 − u2

−1)

(µ− λ)u−1 = Lu−1 + 2csu−1(u2
−1 − u2

1),
(16)

where L = −∆ + V + 2cn(u2
1 + u2

−1).
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Recall that we assume −N < M < N , thus, for j = 1,−1, uj > 0 on D. So
u ∈ A1 implies u−1 = κu1 for some constant κ > 0. Also note that κ 6= 1 since
M 6= 0. The system (16) then gives the following two equations for u1:

(µ+ λ)u1 = −∆u1 + V u1 + 2cn(1 + κ2)u3
1 + 2cs(1− κ2)u3

1; (17)

(µ− λ)u1 = −∆u1 + V u1 + 2cn(1 + κ2)u3
1 + 2cs(κ

2 − 1)u3
1. (18)

Now (17) minus (18) gives λu1 = 2cs(1− κ2)u3
1. Since u1 > 0 on D, we get

u1 =

√
λ

2cs(1− κ2)
.

In particular u1 and u−1 = κu1 are constants. Hence ∆u1 = 0, and then (17) plus
(18) gives

µu1 = V u1 + 2cn(1 + κ2)u3
1,

from which we get

V = µ− 2cn(1 + κ2)u2
1 = µ− cn(1 + κ2)

cs(1− κ2)
λ,

which is also a constant.
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