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A + B THEORY IN CONIFOLD TRANSITIONS

FOR CALABI–YAU THREEFOLDS

YUAN-PIN LEE, HUI-WEN LIN, AND CHIN-LUNG WANG

ABSTRACT. For projective conifold transitions between Calabi-Yau three-
folds X and Y, with X close to Y in the moduli, we show that the com-
bined information provided by the A model (Gromov–Witten theory in
all genera) and B model (variation of Hodge structures) on X determines
the corresponding combined information on Y, and vice versa.
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0. INTRODUCTION

0.1. Statements of results and idea of proofs. Let X be a smooth projective
3-fold. A (projective) conifold transition X ր Y is a projective degeneration

π : X → ∆

of X to a singular variety X̄ = X0 with a finite number of ordinary dou-
ble points (abbreviated as ODPs or nodes) p1, · · · , pk, locally analytically
defined by the equation

x2
1 + x2

2 + x2
3 + x2

4 = 0,

followed by a projective small resolution

ψ : Y → X̄.

In the process of complex degeneration from X to X̄, k vanishing cycles
Si

∼= S3 with trivial normal bundle collapse to nodes pi. In the process of
“Kähler degeneration” from Y to X̄, the exceptional loci of ψ above each pi
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is a smooth rational curve Ci
∼= P1 with NCi/Y

∼= OP1(−1)⊕ OP1(−1). (See
Section 1 for details.) We write Y ց X for the reverse process.

Notice that ψ is a crepant resolution and π is a finite distance degener-
ation with respect to the quasi-Hodge metric [37, 38]. A transition of this
type (in all dimensions) is called an extremal transition. All known Calabi–
Yau 3-folds with the same fundamental group are connected through ex-
tremal transitions, of which conifold transitions are the simplest kind. It
therefore makes sense to start the investigation with conifold transitions. In
this paper we mainly consider conifold transitions among projective Calabi–
Yau threefolds.

We start by studying the changes of the so-called A model and B model
under a general projective conifold transition. In the scope of this paper,
the A model is the Gromov–Witten theory of all genera; the B model is the
variation of Hodge structures (VHS), which is in a sense only the genus
zero part of the quantum B model. A conifold transition, or more generally
an extremal transition, can be regarded as a finite distance B model degen-
eration followed by an inverse of a finite distance A model degeneration.
In contrast to the usual birational K equivalence, an extremal transition may
be considered as a generalized K equivalence in the sense that ψ is crepant
and the degenerating family π preserves sections of canonical bundles.

In general, the conditions for the existence of projective conifold tran-
sitions is an unsolved problem except in the case of Calabi–Yau 3-folds,
for which we have fairly complete understanding. For the inverse coni-
fold transition Y ց X, a celebrated theorem of Friedman [7] (also Kawa-
mata [14] and Tian [36]) states that a small contraction Y → X̄ can be
smoothed if and only if there is a totally nontrivial relation between the
exceptional curves. (Friedman’s theorem was inspired by Clemens’s ear-
lier work [4].) That is, there exist constants ai 6= 0 for all i = 1, . . . , k such
that ∑

k
i=1 ai[Ci] = 0. These are relations among curves [Ci]’s in the kernel of

H2(Y)Z → H2(X)Z. Let µ be the number of independent relations and let
A ∈ Mk×µ(Z) be the relation matrix for Ci’s. Therefore, the dimension of

H2(Y)/H2(X) is k − µ. Conversely, Smith, Thomas and Yau proved dual
statement in [34], asserting that for a conifold transition X ր Y the k van-

ishing 3-spheres Si must satisfy a totally nontrivial relation ∑
k
i=1 bi[Si] = 0

with bi 6= 0 for all i. They are relations among the vanishing cycles [Si]’s
in VZ := ker(H3(X)Z → H3(X̄)Z). Similarly, let ρ be the number of inde-
pendent relations and B ∈ Mk×ρ(Z) be the relation matrix for Si’s. Thus
dimension of V is k − ρ.

The relation matrices A and B are defined for general conifold transitions
regardless the Calabi–Yau assumption on X and Y. It turns out that µ+ ρ =
k and the following exact sequence holds.
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Theorem 0.1 (= Theorem 2.9). Under a conifold transition X ր Y of smooth
projective threefolds, we have

0 → H2(Y)/H2(X)
B−→ Ck At

−→ V → 0

as a exact sequence of weight two Hodge structures.

We interpret this as a partial exchange of topological information be-
tween the excess A model of Y over X (in terms of H2(Y)/H2(X)) and the
excess B model of X over Y in terms of V.

The main goal of this paper is to study the changes of A and B models
under a projective conifold transition of Calabi–Yau 3-folds and its inverse.
We remark that the Kuranishi space MX̄ is smooth due to the unobstruct-
edness result of Ran, Kawamata and Bogomolov–Tian–Todorov. Our main
result is the following theorem, stated in a imprecise form below.

Theorem 0.2. Let X ր Y be a projective conifold transition of Calabi–Yau three-
folds such that [X] is a nearby point of [X̄] in MX̄. Then

(A + B) theory of X ⇐⇒ (A + B) theory of Y.

More precisely,

(1) A(X) is a sub-theory of A(Y).
(2) B(Y) is a sub-theory of B(X).

(3) A(Y) can be reconstructed from a refined A model of X◦ := X \ ⋃k
i=1 Si

“linked” by the vanishing spheres.

(4) B(X) can be reconstructed from a refined B model of Y◦ := Y \ ⋃k
i=1 Ci

“linked” by the exceptional curves.

The meaning of these slightly obscure statements can not be made com-
pletely precise in the limited space here, but will take the entire paper to
spell them out. Nevertheless, we will attempt to give a brief explanation
below.

(1) is due to Li–Ruan [22]. Even though transitions for A model were
intensively studied in the physics literature since 1990’s, the mathemati-
cal study started in [22]. In fact, it follows from their degeneration for-
mula (cf. Proposition 3.1) that Gromov–Witten invariants on X can be re-
constructed from those on Y. This gives (1).

For (2), we note that there are natural identifications of MY with the
boundary of MX̄ consisting of equisingular deformations, and MX with
MX̄ \D where the discriminant locus D is a central hyperplane arrangement
with axis MY (cf. Section 4, especially Section 4.3.3). Therefore, the VHS
associated to Y can be considered as a sub-system of VHS (with logarithmic
singularity) associated to X̄, which is a regular singular extension of the
VHS associated to X.

With (3), we first have to introduce the “linking data” of the holomorphic
curves in X◦, which not only records the curve classes but also how the
curve links with the vanishing spheres

⋃

i Si. The linking data on X can be
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identified with the curve classes in Y by H2(X◦) ∼= H2(Y) (cf. Definition 5.3
and (5.4)). We then proceed to show, by the degeneration argument, that
the virtual class of moduli spaces of stable maps to X◦ is naturally a disjoint
union of pieces labeled by elements of the linking data (c.f. Proposition 5.9):
Given β a curve class in X, we can associate to it a set of curve classes γ on
Y, called the liftings of β, so that there is a decomposition

[M(X, β)]virt = ∐
γ∈H2(X◦)

[M(X, γ)]virt ∼ ∐
γ∈H2(Y)

[M(Y, γ)]virt.

Furthermore, the Gromov–Witten invariants of the curve class γ in Y is
the same as the numbers produced by the component of the virtual class
on X labeled by the corresponding linking data (c.f. Proposition 5.9). Thus,
the refined A model is really the “linked A model” and the linked A model
on X is equivalent to the (usual) A model of Y (for non-extremal curves
classes) in all genera. Note that here the vanishing cycles from B(X) plays
a key role in reconstructing A(Y).

For (4), the goal is to reconstruct VHS on MX from VHS on MY and
A(Y). The deformation of X̄ is unobstructed. Moreover it is well known
that Def(X̄) ∼= H1(Y◦, TY◦). Even though geometrically the deformation of
Y◦ is obstructed (in the direction transversal to MY), there is a first order
deformation parameterized by H1(Y◦, TY◦) which gives enough initial con-
dition to uniquely determine the degeneration of Hodge bundles on MX̄

near MY. The most technical result needed in this process is a short exact
sequence

0 → V → H3(X) → H3(Y◦) → 0

which connects the limiting mixed Hodge structure (MHS) of Schmid on
H3(X) and the canonical MHS of Deligne on H3(Y◦) (c.f. Proposition 6.1).
Together with the monodromy data associated to the ODPs, which is en-
coded in the relation matrix A of the extremal rays on Y, we will be able
to determine the VHS on MX near MY. In the process, we need a slight
extension of Schmid’s nilpotent orbit theorem [32] to degenerations with
certain non-normal crossing discriminant loci.

Consider a degeneration of polarized Hodge structures over ∆µ × M

with discriminant locus D =
⋃k

i=1 Di being a central hyperplane arrange-

ment with axis M. Let N(i) be the nilpotent monodromy around the hyper-
plane Di = Z(wi) and suppose that the monodromy group Γ generated by

N(i)’s is abelian. Let D denote the period domain and Ď its compact dual.
We prove in Theorem 4.15 that the period map

φ : ∆µ × M \D → D/Γ

takes the following form

φ(r, s) = exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

ψ(r, s),



A + B THEORY IN CONIFOLD TRANSITIONS 5

where ψ : ∆µ × M → Ď is holomorphic and horizontal.
The fact that the monodromy group Γ is abelian for conifold degenera-

tions follows from the Picard–Lefschetz formula easily (c.f. (4.5) in Section
4). In particular it applies to degenerations over MX̄ associated to conifold
transitions X ր Y of Calabi–Yau 3-folds through X̄. In general, the abelian
constraint is automatic if µ ≥ 3 (see Remark 4.16).

In the proof of Theorem 0.2 (4) (Section 6.3), it turns out that the natural
coordinates r1, · · · , rµ on MX̄ in the directions transversal to MY are given
by periods of independent vanishing cycles Γ1, · · · , Γµ (a basis of V):

rj =
∫

Γj

Ω,

where Ω is a relative holomorphic 3-form over MX̄. The horizontal map ψ
corresponds to the refined B model on Y◦, and the linear forms

wi =
∫

Si

Ω = ai1r1 + · · ·+ aiµrµ, 1 ≤ i ≤ k

correspond to the k × µ relation matrix A = (aij). Thus the above factor-
ization of φ gives the precise description of the “linking” of B(Y◦) by the
exceptional curves Ci’s (viewed as data from A(Y)). This completes the
outline of the proof of Theorem 0.2.

The following comparison of proofs of (3) and (4) might be helpful.
In the proof of (3), we calculate the Gromov–Witten invariants associated

to the extremal rays in Y, via the multiple cover formulas and relation ma-
trix B of the vanishing spheres Si’s in X. As a consequence we determine
the monodromy along the discriminant loci in the Kähler moduli (see Sec-
tion 3.3). Combined with the refined A model on X◦ we then determine
A(Y). Notice that we actually identify all Gromov–Witten invariants with-
out making use of the monodromy or the Dubrovin connection—though at
the end we may write down a dual formulation as in Theorem 4.15.

In the proof of (4), the starting point is the Picard–Lefschetz monodromy
and then the refined B model on Y◦. Finally they are “linked” via the ex-
tended nilpotent orbit theorem (Theorem 4.15). In this approach the corre-
sponding invariants are the so called Yukawa couplings, which turn out are
derived as consequences (see Proposition 4.18 and Section 4.3.4) and are
not used in the proof. Thus, while the general structures on both directions
are similar, the technical details and logic of proof are different.

0.2. Motivation and future plans. All known examples of Calabi–Yau 3-
folds of the same fundamental group are connected by extremal transitions,
and many of them are indeed known to be connected by conifold transi-
tions. The famous Reid’s fantasy [29] suggests the possibility that in fact all
of them are connected by conifold transitions. Therefore, in order to study
A model or B model of any Calabi–Yau threefold one might “only” needs
to study their changes under an extremal (or even conifold) transition and
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one simplest example, which is “easy”. This work is meant to be the first
general study in this direction.

Theorem 0.2 above can be interpreted as partial exchange of A and B
models under a conifold transition. We hope to be able to answer the fol-
lowing intriguing question concerning with “global symmetries” on mod-
uli spaces of Calabi–Yau 3-folds in the future: Would this partial exchange of
A and B models lead to “full exchange” when one connects a Calabi–Yau threefold
to its mirror via a finite steps of extremal transitions? If so, what is the rela-
tion between this full exchange and the one induced by “mirror symmetry”? In
particular, the Fermat quintic and its mirror would be an excellent testing
ground as their genus zero A model are both computed in [9, 24] and [19].
To this end, we need to devise a computationally effective way to achieve
explicit determination. One missing piece of ingredients in this direction
is a blowup formula in the Gromov–Witten theory for conifolds, which we

are working on and have had some partial success [18]. 1 The reverse impli-
cation is not constructive either. It might be possible to explicitly construct
the VHS of X from that of Y◦ via the logarithmic model of degenerating
Hodge structure of Steenbrink [35] (and Clemens [5]). The details remain
to be worked out.

More speculatively, the mutual determination of A and B models on X
and Y leads us to surmise the possibility of a unified “A + B model” which
will be invariant under any extremal transition. For example, the string the-
ory only predicts that Calabi–Yau threefolds form an important ingredient
of our universe, but fails to tell us which Calabi–Yau threefold we should
live in. Should the A + B model be available and proven to be invariant
under any extremal transition, there is no need to choose which universe
to live in (at least for the worlds governed by the TQFT).

The first step of achieving this goal is to find a D-module version of
the basic exact sequence (Theorem 0.1). On V there is a natural flat con-
nection given by the Gauss–Manin connection. H2(Y)/H2(X) is naturally
endowed with the Dubrovin connection. Therefore, it is not unreasonable
to expect a D-module lift of the basic exact sequence (c.f. Proposition 7.1),
which may be heuristically interpreted as

“excess A theory” + “excess B theory” = “trivial”.

We hope to be able to “glued” the flat (log) connections of the excess the-
ories to the Dubrovin connection on the A side and the Gauss–Manin con-
nection on the B side. This will be a key step in constructing the speculative
A + B theory.

0.3. Outline of the paper. In Section 1 we review the basic geometry of a
projective conifold transition.

1For (smooth) blowups with complete intersection centers, we have a fairly good solu-
tion in genus zero.
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In Section 2, we compute the limiting mixed Hodge structures of the two
semistable models associated to the conifold degeneration. Using ingredi-
ents from Hodge theory, we derive the basic exact sequence in Theorem 2.9.

Section 3 is devoted to some discussions on Gromov–Witten theory un-
der a conifold transition. We explain Theorem 0.2 (1) in Section 3.1 and
then concentrate on the genus zero Gromov–Witten theory associated to
the exceptional curves (extremal rays) of ψ : Y → X̄.

In Section 4, we recall the relevant deformation theory of Calabi–Yau
threefold conifolds and extend part of Bryant–Griffiths’s study of periods
of smooth Calabi–Yau threefolds to Calabi–Yau conifolds. In doing so, we
prove an extension of the nilpotent orbit theorem where the discriminant
loci is not a simple normal crossing divisor but a central hyperplane ar-
rangement. Using it, we identify the singular part of the period map.

Section 5 finishes the proof of Theorem 0.2 (3). The major new construc-
tion in this section is the definition of the refined Gromov–Witten invariants
on X◦ := X \⋃k

i=1 Si. Together with ingredients on extremal ray invariants
from Section 3 we complete the determination of A(Y).

With Section 6 the proof Theorem 0.2 (4) is complete. The major theme

in this section is to study the deformation theory on Y◦ := Y \ ⋃k
i=1 Ci.

The resulting variations of mixed Hodge structures is what we called the
refined B model on Y◦. Together with the extended nilpotent orbit theorem
we complete the determination of B(X).

The paper is concluded in Section 7 by two remarks concerning our fu-
ture plans on the D-module lift of the basic exact sequence and effective
methods to determine Gromov–Witten theory on Y in terms of X.

0.4. Acknowledgements. We are grateful to C.H. Clemens, C.-C. M. Liu,
I. Smith, and R. Thomas, for discussions related to this project.

Y.-P. L.’s research is partially funded by the National Science Foundation.
H.-W. Lin and C.-L. Wang are both supported by the Ministry of Science
and Technology, Taiwan. We are grateful to Taida Institute of Mathematical
Sciences (TIMS) for its generous and constant support which makes this
long term collaboration possible.

1. PRELIMINARIES OF CONIFOLD TRANSITIONS

In Sections 1–3, all discussions are for any projective conifold transition
without the Calabi–Yau condition, unless otherwise specified. The Calabi–Yau
condition is imposed in Sections 4–6.

1.1. Local geometry.

Definition 1.1. Let X be a smooth projective 3-fold. A (projective) conifold
transition X ր Y is a projective degeneration

π : X → ∆
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of X to a singular variety X̄ = X0 with a finite number of ordinary double
points (ODPs, nodes, A1 singularities) pi, · · · , pk, followed by a projective
small resolution

ψ : Y → X̄.

We write Y ց X for the inverse conifold transition.

Locally analytically, an ordinary double point is defined by the equation

(1.1) x2
1 + x2

2 + x2
3 + x2

4 = 0,

or equivalently

uv − ws = 0.

The small resolution ψ can be achieved by blowing up the Weil divisor
defined by u = w = 0 or by u = s = 0, these two choices differ by a flop.

Lemma 1.2. The exceptional locus of ψ above each pi is a smooth rational curve
Ci

∼= P1 with the normal bundles

NCi/Y
∼= OP1(−1)⊕ OP1(−1).

Topologically, NCi/Y is a trivial rank 4 real vector bundle.

Proof. This follows from the above local description of blowing up. Away
from the isolated singular points pi’s, the Weil divisors are Cartier and the
blowups do nothing. Locally near pi, the Weil divisor is generated by two
functions u and w. The blowup Y ⊂ A4 × P1 is defined by z0v − z1s = 0,
in addition to uv − ws = 0 defining X, where (z0 : z1) are the coordinates
of P1. Namely we have

u

w
=

s

v
=

z0

z1
.

It is now easy to see the exceptional locus near pi is isomorphic to P1 and
the normal bundle is as described (by the definition of OP1(−1)). It is topo-
logically trivial since all Z/2 Stiefel–Whitney classes wk’s are zero. �

Locally to each node p = pi ∈ X̄, the transition X ր Y can be considered
as two different ways of “smoothing” the singularities in X̄: deformation
leads to Xt and small resolution leads to Y. Topologically, we have seen

that the exceptional loci of ψ are ∐
k
i=1 Ci, a disjoint union of k 2-spheres.

For the deformation, the classical results of Picard, Lefschetz and Milnor
state that there are k vanishing 3-spheres Si

∼= S3.

Lemma 1.3. Topologically the normal bundle

NSi/Xt
∼= T∗

Si

is a trivial rank 3 real vector bundle.
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Proof. From the local description of the singularity (1.1), we have, after de-
gree two base change, the local equation of the family near an ordinary
double point:

4

∑
j=1

x2
j = t2 = |t|2e2

√
−1θ.

With a simple change of variables yj = e
√
−1θ xj for j = 1, . . . , 4, the equation

becomes

(1.2)
4

∑
j=1

y2
j = |t|2

Write yj in terms of real coordinates yj = aj +
√
−1bj, (1.2) becomes

(1.3) |~a|2 = |t|2 + |~b|2 and ~a ·~b = 0,

where ~a and ~b are two vectors in R4. The set of solutions to (1.3) can be
identified with T∗Sr with the bundle structure T∗Sr → Sr defined by

(~a,~b) 7→ r
~a

|~a| ∈ Sr

where Sr is the 3-sphere with radius r = |t|. The vanishing sphere can
be chosen to be the real locus of the equation of (1.2). Therefore, NSr/Xt

is naturally identified with the cotangent bundle T∗Sr, which is a trivial
bundle since S3 ∼= SU(2) is a Lie group. �

Remark 1.4. We see from the above description that the vanishing spheres
are Lagrangian with respect to the natural symplectic structure on T∗S3.
A theorem of Seidel and Donaldson [33] states that this is true globally,
namely the vanishing spheres can be chosen to be Lagrangian with respect
to the symplectic structure coming from the Kähler structure of Xt.

By Lemma 1.2, the δ neighborhood of the vanishing 3-sphere S3
r in Xt is

homeomorphic to trivial disc bundle S3
r ×D3

δ . By Lemma 1.2 the r neighbor-

hood of the exceptional 2-sphere Ci = S2
δ is D4

r × S2
δ, where δ is the radius

defined by 4πδ2 =
∫

Ci
ω for the background Kähler metric ω. Therefore,

we have the following conclusion.

Corollary 1.5. On the topological level one can go between Y and Xt by surgery
via

∂(S3
r × D3

δ) = S3
r × S2

δ = ∂(D4
r × S2

δ).

Remark 1.6 (Orientations on S3). The two choices of orientations on S3
r in-

duces two different surgeries. The resulting manifolds Y and Y′ are in gen-
eral not even homotopically equivalent. In the complex analytic setting the
induced map Y 99K Y′ is known as an ordinary (Atiyah) flop.
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1.2. Global topology. Now we turn to the global topological constraint.

Lemma 1.7. Define

µ := 1
2(h

3(X)− h3(Y))

and

ρ := h2(Y)− h2(X)

Then,

(1.4) µ + ρ = k.

Proof. The Euler numbers satisfy

χ(X)− kχ(S3) = χ(Y)− kχ(S2).

That is,

2 − 2h1(X) + 2h2(X)− h3(X) = 2 − 2h1(Y) + 2h2(Y)− h3(Y)− 2k.

By the above surgery argument we know that conifold transitions preserve
the fundamental group. Therefore,

1
2(h

3(X)− h3(Y)) + (h2(Y)− h2(X)) = k.

�

Remark 1.8. In the Calabi-Yau case, µ = h2,1(X) − h2,1(Y) = −∆h2,1 is the
lose of complex moduli, and ρ = h1,1(Y) − h1,1(X) = ∆h1,1 is the gain of

Kähler moduli. Thus (1.4) is really ∆(h1,1 − h2,1) = k = 1
2 ∆χ.

This might suggest the expression A − B instead of A + B. We use the
latter since it really means a combined (A, B) theory, with the interpretation

that A corresponds to Hev and B corresponds to Hodd.

In the next section, we will study the Hodge-theoretic meaning of this sim-
ple topological equality.

2. HODGE THEORY AND THE BASIC EXACT SEQUENCE

Convention. In this paper, unless otherwise specified, cohomology groups
are over Q when only topological aspect (including weight filtration) is
concerned; they are considered over C when the (mixed) Hodge-theoretic
aspect is involved.

All equalities, whenever they make sense in the context of mixed Hodge
structure (MHS), hold as equalities for MHS unless otherwise specified.

2.1. Two semistable degenerations. In order to apply Hodge-theoretic tech-
niques on the degenerations, we factor the transition X ր Y as a composi-
tion of two semistable degenerations X → ∆ and Y → ∆.

The complex degeneration

(2.1) f : X → ∆
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is the semistable reduction for X → ∆ obtained by a degree two base
change X

′ → ∆ followed by the blow-up X → X
′ of all the four dimen-

sional nodes p′i ∈ X
′. The special fiber X0 =

⋃k
j=0 Xj is a simple normal

crossing divisor with

ψ̃ : X0
∼= Ỹ := Bl

∐
k
i=1{pi} X̄ → X̄

being the blow-up at the nodes and with

Xi = Qi
∼= Q ⊂ P4, i = 1, . . . , k

being quadric threefolds. Let X[j] be the disjoint union of j + 1 intersections
from Xi’s. Then the only nontrivial terms are

X[0] = Ỹ ∐
i

Qi and X[1] = ∐
i

Ei

where

Ei = Ỹ ∩ Qi
∼= P1 × P1

are the ψ̃ exceptional divisors. The semistable reduction f does not require
the existence of a small resolution of X0.

The Kähler degeneration

(2.2) g : Y → ∆

is simply the deformations to the normal cone

Y = Bl∐ Ci×{0}Y × ∆ → ∆.

The special fiber Y0 =
⋃k

j=0 Yj with

φ : Y0
∼= Ỹ := Bl

∐
k
i=1{Ci} Y → Y

being the blow-up along the curves Ci’s and

Yi = Ẽi
∼= Ẽ = PP1(O(−1)2 ⊕ O), i = 1, . . . , k.

In this case the only non-trivial terms for Y[j] are

Y[0] = Ỹ ∐
i

Ẽi and Y[1] = ∐
i

Ei

where

Ei = Ỹ ∩ Ẽi

is now understood as the infinity divisor (or relative hyperplane section) of
πi : Ẽi → Ci

∼= P1.

2.2. Mixed Hodge Structure and the Clemens–Schmid exact sequence.
We apply the Clemens–Schmid exact sequence to the above two semistable
degenerations. A general reference for the background material here is [11].
We will mainly be interested in H≤3, although the computation of H>3 is
similar.
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2.2.1. The cohomology of the central fiber H∗(X0), with its canonical mixed
Hodge structure, is computed from the spectral sequence

E
p,q
1 (X0) = Hq(X[p])

with the differential d1 = δ the combinatorial coboundary operator

δ : Hq(X[p]) → Hq(X[p+1]).

The spectral sequence degenerates at E2 terms. The weight filtration on
H∗(X0) is induced from the following increasing filtration on the spectral
sequence Wm :=

⊕

q≤m E∗,q. Therefore,

GrW
m (H j) = E

j−m,m
2 , GrW

m (H j) = 0 for m < 0 or m > j.

Since X[j] 6= ∅ only when j = 0, 1, we have

H0 ∼= E0,0
2 , H1 ∼= E1,0

2 ⊕ E0,1
2 , H2 ∼= E1,1

2 ⊕ E0,2
2 , H3 ∼= E1,2

2 ⊕ E0,3
2 .

The only weight 3 piece is E0,3
2 , which can be computed by

δ : E0,3
1 = H3(X[0])−→ E1,3

1 = H3(X[1]).

Since Qi, Ẽi and Ei have no odd cohomologies, H3(X[1]) = 0 and H3(X[1]) =

H3(Ỹ). We have thus E0,3
2 = H3(Ỹ).

The weight 2 pieces, which is the most essential part, can be computed
from the following map

(2.3) H2(X[0]) = H2(Ỹ)⊕
k
⊕

i=1

H2(Qi)
δ2−→ H2(X[1]) =

k
⊕

i=1

H2(Ei).

We have E1,2
2 = cok(δ2) and E0,2

2 = ker(δ2).
The weight 1 and weight 0 pieces can be similarly computed. For weight

1 pieces we have

E0,1
2 = H1(X[0]) = H1(Ỹ) ∼= H1(Y) ∼= H1(X),

and E1,1
2 = 0. The weight 0 pieces are computed from

δ : H0(X[0]) → H0(X[1])

and we have
E0,0

2 = H0(Ỹ) ∼= H0(Y) ∼= H0(X),

and E1,0
2 = 0.

We summarize these calculations in the following lemma.

Lemma 2.1.

H3(X0) ∼= H3(Ỹ)⊕ cok(δ2),

H2(X0) ∼= ker(δ2),

H1(X0) ∼= H1(Ỹ) ∼= H1(Y) ∼= H1(X),

H0(X0) ∼= H0(Ỹ) ∼= H0(Y) ∼= H0(X).
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In particular, H j(X0) is pure of weight j for j ≤ 2.

2.2.2. Here we give a dual formulation of (2.3) which will be useful later.
Let ℓ, ℓ′ be the line classes of the two rulings of E ∼= P1 ×P1. Then H2(Q, Z)
is generated by e = [E] as a hyperplane class and e|E = ℓ+ ℓ′. The map δ2

in (2.3) is then equivalent to

(2.4) δ̄2 : H2(Ỹ) −→
k
⊕

i=1

H2(Ei)/H2(Qi).

Since H2(Ỹ) = φ∗H2(Y)⊕⊕k
i=1〈[Ei]〉 and [Ei]|Ei

= −(ℓi + ℓ′i), the second

component
⊕k

i=1〈[Ei]〉 lies in ker(δ̄2) and δ̄2 factors through

(2.5) φ∗H2(Y) →
k
⊕

i=1

H2(Ei)/H2(Qi) ∼=
k
⊕

i=1

〈ℓi − ℓ
′
i〉

(as Q-spaces). Notice that the quotient is isomorphic to
⊕k

i=1〈ℓ′i〉 integrally.
By reordering we may assume that φ∗ℓi = [Ci] and φ∗[Ci] = ℓi − ℓ′i

(c.f. [16]). The dual of (2.5) then coincides with the fundamental class map

ϑ :
k
⊕

i=1

〈[Ci]〉 −→ H2(Y).

In general for a Q-linear map ϑ : P → Z, we have

im ϑ∗ ∼= (P/ ker ϑ)∗ ∼= (im ϑ)∗.

Thus

(2.6) dimQ cok(δ2) + dimQ im(ϑ) = k.

We will see in Corollary 2.5 that dim cok δ = µ and dim im ϑ = ρ. This
gives the Hodge theoretic meaning of µ + ρ = k in Lemma 1.7. Further
elaboration of this theme will follow in Theorem 2.9.

2.2.3. On Y0, the computation is similar and a lot easier. The weight 3
piece can be computed by the map

H3(Y[0]) = H3(Ỹ) −→ H3(Y[1]) = 0;

the weight 2 piece is similarly computed by the map

H2(Y[0]) = H2(Ỹ)⊕
k
⊕

i=1

H2(Ẽi)
δ′2−→ H2(Y[1]) =

k
⊕

i=1

H2(Ei).

Let h = π∗(pt) and ξ = [E] for

π : Ẽ → P1.

Then h|E = ℓ′ and ξ|E = ℓ+ ℓ′. In particular the restriction map H2(Ẽ) →
H2(E) is an isomorphism and hence δ′2 is surjective. The computation of
pieces from weights 1 and 0 is the same as for X0. We have therefore the
following lemma.
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Lemma 2.2.

H3(Y0) ∼= H3(Y[0]) ∼= H3(Ỹ),

H2(Y0) ∼= ker(δ′2) ∼= H2(Ỹ),

H1(Y0) ∼= H1(Ỹ) ∼= H1(Y) ∼= H1(X),

H0(Y0) ∼= H0(Ỹ) ∼= H0(Y) ∼= H0(X).

2.2.4. Slightly abusing the notation, we denote by N the monodromy op-
erator for both X and Y families. N induces the weight filtrations on
Schmid’s limiting Hodge structures on H∗(X) and H∗(Y).

Lemma 2.3. We have the following exact sequences (of MHS) for H2 and H3 of
X0 and Y0:

0 → H3(X0) →H3(X)
N−→ H3(X) → H3(X0) → 0,

0 → H0(X) → H6(X0) → H2(X0) →H2(X)
N−→ 0,

0 → H3(Y0) →H3(Y)
N−→ 0,

0 → H0(Y) → H6(Y0) → H2(Y0) →H2(Y)
N−→ 0,

Proof. These follow from the Clemens–Schmid exact sequence, which is
compatible with the MHS. Note that the monodromy is trivial for Y → ∆

since the punctured family is trivial. By Lemma 2.1, we know that H2(X0)
is pure of weight 2. Hence N on H2(X) is also trivial and the Hodge struc-
ture does not degenerate. �

Remark 2.4. Strictly speaking there are other terms in the first sequence,
namely H1(X) → H5(X0) to the left end and H5(X0) → H5(X) to the right
end. It can be ignored since they induce isomorphisms, as can be checked
using MHS on H5(X0). Similar comments apply to the third sequence for
H3(Y). All these vanish if we impose the regularity condition h1(O) = 0.

Corollary 2.5. (i) ρ = dim im(ϑ) and µ = dim cok(δ2).

(ii) H3(Y) ∼= H3(Y0) ∼= H3(Y[0]) ∼= H3(Ỹ) ∼= GrW
3 H3(X).

(iii) Denote by K the kernel of the monodromy operator

K := ker(N : H3(X) → H3(X)).

We have H3(X0) ∼= K. More precisely,

GrW
3 (H3(X0)) ∼= H3(Y), GrW

2 (H3(X0)) ∼= cok(δ2).

Proof. By Lemma 2.1, h2(X0) = dim ker(δ2). It follows from the second and
the fourth exact sequences in Lemma 2.3 that

h2(X) = dim ker(δ2) + 1 − (k + 1).

Rewrite (2.3) as

(2.7) 0 → ker(δ2) → H2(X[0])
δ−→ H2(X[1]) → cok(δ2) → 0,
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which implies

dim ker(δ2) + 2k = dim cok(δ2) + 2k + h2(Y).

Combining these two equations with (2.6), we have

ρ = h2(Y)− h2(X) = k − dim cok(δ2) = dim im(ϑ).

This proves the first equation for ρ in (i).
Combining the first equation in Lemma 2.2 and the third exact sequence

in Lemma 2.3, we have

(2.8) H3(Y) ∼= H3(Y0) ∼= H3(Ỹ).

(This can also be seen from the geometry of blowing up.) This shows (ii)
except the last equality.

By Lemmas 2.3 and 2.1,

K ∼= H3(X0) ∼= H3(Ỹ)⊕ cok(δ2) ∼= H3(Y)⊕ cok(δ2),

where the last equality follows from (2.8). This proves (iii).
For the remaining parts of (i) and (ii): From the non-trivial terms of the

limiting Hodge diamond, where Hn := Hn(X) and

H
p,q
∞ Hn = F

p
∞ GrW

p+q Hn,

we have

(2.9) H2,2
∞ H3

N∼

��

H3,0
∞ H3 H2,1

∞ H3

ttttttttt

H1,2
∞ H3

tt
tt
tt
tt
t

H0,3
∞ H3

H1,1
∞ H3,

where H3,0
∞ H3 does not degenerate due to a result in [38] (which holds for

more general degenerations with canonical singularities, and first proved

in [37] for the Calabi–Yau case). We conclude that H1,1
∞ H3 ∼= cok(δ2) and

GrW
3 H3(X) ∼= H3(Y). Thus

µ = h2,2
∞ H3 = h1,1

∞ H3 = dim cok(δ2).

�

2.2.5. We denote the vanishing cycle space V as the Q-vector space gener-
ated by vanishing 3-cycles. We first define the abelian group VZ from

(2.10) 0 → VZ → H3(X, Z) → H3(X̄, Z) → 0,

and V := VZ ⊗Z Q. We note that the exactness on the right holds for any
3-fold isolated singularities.

We will give a further geometric characterization of the defect invariant
µ in terms of V.
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Lemma 2.6. (i) H3(X̄) ∼= K ∼= H3(X0).

(ii) V∗ ∼= H2,2
∞ H3 and V ∼= H1,1

∞ H3 = cok(δ2).

Proof. Dualizing (2.10) over Q, we have

0 → H3(X̄) → H3(X) → V∗ → 0.

The invariant cycle theorem in [1] implies that

H3(X̄) ∼= ker N = K ∼= H3(X0).

This proves (i).
Hence we have the canonical isomorphism

V∗ ∼= H2,2
∞ H3 = F2

∞GW
4 H3(X).

Moreover, the non-degeneracy of the pairing (Nα, β) on GW
4 H3(X) implies

that

H1,1
∞ H3 = NH2,2

∞ H3 ∼= (H2,2
∞ H3)∗ ∼= V∗∗

C
∼= VC.

This proves (ii). �

Remark 2.7. We must be careful in dealing with this isomorphism H1,1
∞ H3 ∼=

V. The vanishing cycle space V is defined over Z while H1,1
∞ H3 is intrinsi-

cally defined only as a complex vector space. In identifying V with H1,1
∞ H3,

we used two different duality: Hom(·, Q), which brings it to the dual space,
and the duality under a bilinear pairing (Poincaré pairing), which stays in
the same vector space.

Remark 2.8 (On threefold extremal transitions). Most results in Section 2.2
works for more general geometric contexts. The mixed Hodge diamond
(2.9) holds for any 3-folds degenerations with at most canonical singulari-
ties [38]. The identification of vanishing cycle space V via (2.10) works for
3–folds with only isolated singularities, hence Lemma 2.6 works for any
3-fold degenerations with isolated canonical singularities.

Later on we will impose the Calabi–Yau condition on all the 3-folds in-
volved. If X ր Y is a terminal transition of Calabi–Yau 3-folds, i.e., X0 = X̄
has at most (isolated Gorenstein) terminal singularities, then X̄ has unob-
structed deformations [26]. Moreover, the small resolution Y → X̄ induces
an embedding Def(Y) →֒ Def(X̄) which identifies the limiting/ordinary

pure Hodge structures GrW
3 H3(X) ∼= H3(Y) as in Corollary 2.5 (iii).

For conifold transitions all these can be described in explicit terms and
more precise structure will be formulated.

2.3. The basic exact sequence. We may combine the four Clemens–Schmid
exact sequences into one short exact sequence, which we call the basic exact
sequence, to give the Hodge-theoretic realization of the equality “ρ + µ = k”
in Lemma 1.7.
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Let A = (aij) ∈ Mk×µ(Z) be the relation matrix for Ci’s, i.e.,

k

∑
i=1

aij[Ci] = 0, j = 1, . . . , µ.

Similarly, let B = (bij) ∈ Mk×ρ(Z) be the relation matrix for Si’s:

k

∑
i=1

bij[Si] = 0, j = 1, . . . , ρ.

Theorem 2.9 (Basic exact sequence). The group of real 2-cycles generated by
exceptional curves Ci (vanishing S2 cycles) on Y and the group of 3-cycles gener-
ated by [Si] (vanishing S3 cycles) on X are linked by the following weight 2 exact
sequence

0 → H2(Y)/H2(X)
B−→

k
⊕

i=1

H2(Ei)/H2(Qi)
At

−→V → 0.

In particular B = ker At and A = ker Bt.

Proof. To see this, we use the sequence in (2.7). From the discussions in
Section 2.2.2, we know that cok(δ2) = cok(δ̄2) and (2.7) can be replaced by

(2.11) 0 → H2(Ỹ)/(ker δ̄)
D−→

k
⊕

i=1

H2(Ei)/H2(Qi)
C−→ cok(δ2) → 0.

By Lemma 2.6 (ii), we have cok(δ2) ∼= V. To prove the theorem, we need to
show that

H2(Ỹ)/ ker δ̄ ∼= H2(Y)/H2(X),

and D = B, C = At.
Let us start with making sense of the quotient H2(Y)/H2(X). Again by

the version of invariant cycle theorem in [1], we have H2(X) = H2(X̄). By
the blow-up description in Section 1.1, H2(X̄) injects to H2(Y) by pullback.
This defines the embedding

(2.12) ι : H2(X) →֒ H2(Y)

and the quotient H2(Y)/H2(X).
Recast the relation matrix A of the rational curves Ci in the following

form

0 → Qµ A−→Qk ∼=
k
⊕

i=1

〈[Ci]〉 S−→ im(ϑ) → 0

where S = cok(A) ∈ Mρ×k is the matrix for ϑ, and im(ϑ) has rank ρ. The
dual sequence reads
(2.13)

0 → (im ϑ)∗ ∼= (Qρ)∗
St

−→(Qk)∗ ∼=
k
⊕

i=1

H2(Ei)/H2(Qi)
At

−→(Qµ)∗ → 0.
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Compare (2.13) with (2.11), we see that (Qµ)∗ ∼= V. From the discussion in
Section 2.2.2, we have (im ϑ)∗ = H2(Y)/H2(X).

We want to reinterpret the map At : (Qk)∗ → V in (2.13). This is a
presentation of V by k generators, denoted by σi, and the relation matrix of
which is given by St. If we show that σi can be identified with the vanishing
sphere Si, then (Qµ)∗ ∼= V and B = St = ker At is the relation matrix for
Si’s.

Consider the following topological construction. For any non-trivial in-

tegral relation ∑
k
i=1 ai[Ci] = 0, there is a 3-chain θ in Y with

∂θ =
k

∑
i=1

aiCi.

Under ψ : Y → X̄, Ci collapses to the node pi. Hence it creates a 3-cycle
θ̄ := ψ∗θ ∈ H3(X̄, Z), which deforms (lifts) to γ ∈ H3(X, Z) in nearby
fibers. Using the intersection pairing on H3(X, Z), γ then defines an ele-
ment PD(γ) in H3(X, Z). Under the restriction to the vanishing cycle space
V, we get PD(γ) ∈ V∗.

It remains to show that
(γ.Si) = ai.

Let Ui be a small tubular neighborhood of Si and Ũi be the corresponding
tubular neighborhood of Ci, then by Corollary 1.5,

∂Ui
∼= ∂(S3

i × D3) ∼= S3 × S2 ∼= ∂(D4 × Ci) ∼= ∂Ũi.

Now θi := θ ∩ Ũi gives a homotopy between ai[Ci] (in the center of Ũi) and
ai[S

2] (on ∂Ũi). Denote by ι : ∂Ui →֒ X and ι̃ : ∂Ũi →֒ Y. Then

(γ.Si)
X = (γ.ι∗[S3])X = (ι∗γ.[S3])∂Ui = (ι̃∗γ.[S3])∂Ũi

= (ai[S
2], [S3])S3×S2

= ai.

The proof is complete. �

Remark 2.10. As a byproduct, notice that there are precisely k − ρ = µ =
dim V∗ independent relations, hence we also see directly that (ai) 7→ PD(γ)
establishes a group isomorphism from curve relations among Ci’s to V∗.

Convention. We would like to choose a preferred basis of the vanishing co-
cycles V∗ as well as a basis of divisors dual to the space of extremal curves.
These notations will fixed henceforth and will be used in later sections.

During the course of the proof of Theorem 2.9 (c.f. Remark 2.10) we es-
tablish the correspondence for each column vector Aj = (a1j, · · · , akj)

t with

the element PD(γj) ∈ V∗, 1 ≤ j ≤ µ, characterized by

aij = (γj.Si).

The subspace of H3(X) spanned by these γj’s will be denoted by V ′.
Dually, we denote by T1, · · · , Tρ ∈ H2(Y) those divisors which form an

integral basis of the lattice in H2(Y) dual (orthogonal) to H2(X) ⊂ H2(Y).
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In particular they form an integral basis of H2(Y)/H2(X). Notice that we
may choose Tl’s such that Tl corresponds to the l-th column vector of the
matrix B via

bil = (Ci.Tl).

Such a choice is consistent with the basic exact sequence since

(AtB)jl =
k

∑
i=1

at
jibil =

k

∑
i=1

aij(Ci.Tl) =
(

∑ aij[Ci]
)

.Tl = 0

for all j, l. We may also assume that the first ρ × ρ minor of B has full rank.

3. GROMOV–WITTEN THEORY AND DUBROVIN CONNECTIONS

3.1. Consequences of the degeneration formula for threefolds. Gromov–
Witten theory on X can be related to that on Y by the degeneration formula
through the two semistable degenerations introduced in Section 2.1.

In the previous section, we have seen that the monodromy actions are
trivial on H(X) except H3(X) for which we have

H3
inv(X) = K ∼= H3(Y)⊕ H1,1

∞ H3(X) ∼= H3(Y)⊕ V.

There we implicitly have a linear map

(3.1) ι : H
j
inv(X) → H j(Y)

as follows. For j = 3, it is the projection

H3
inv(X) ∼= H3(Y)⊕ V → H3(Y).

For j = 2, it is the embedding defined in (2.12) and j = 4 case is the same
as (dual to) j = 2 case. For j = 0, 1, 5, 6, ι is an isomorphism.

The following is a refinement of a result of Li–Ruan [22]. (See also [23].)

Proposition 3.1. Let X ր Y be a projective conifold transition. Given

~a ∈ (H≥2
inv(X)/V)⊕n

and a curve class β ∈ NE(X) \ {0}, we have

(3.2) 〈~a〉X
g,n,β = ∑

ψ∗(γ)=β

〈ι(~a)〉Y
g,n,γ.

If some component of~a lies in H0, then both sides vanish. Furthermore, the RHS
is a finite sum.

Proof. (3.2) has been proved in [22, 23] under slightly stronger assumptions.
We review its proof with slight refinements as it will be useful in Section 5.

A cohomology class a ∈ H>2
inv(X)/V can always find an admissible lift to

(ai)
k
i=0 ∈ H(Ỹ)⊕

k
⊕

i=1

H(Qi)

such that ai = 0 for all i 6= 0. This is the lifting of the cohomology class we
will use in the degeneration arguments below.
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We apply J. Li’s algebraic version of degeneration formula [21, 23] to the
complex degeneration (2.1) X  Ỹ ∪E Q, where Q = ∐ Qi is a disjoint

union of quadrics Qi’s and E := ∑
k
i=1 Ei. One has KỸ = ψ̃∗KX̄ + E. The

topological data (g, n, β) lifts to two admissible triples Γ1 on (Ỹ, E) and Γ2

on (Q, E) such that Γ1 has curve class γ̃ ∈ NE(Ỹ), contact order µ = (γ̃.E),
and number of contact points ρ. Then

(γ̃.c1(Ỹ)) = (ψ̃∗γ̃.c1(X̄))− (γ̃.E) = (β.c1(X))− µ.

The virtual dimension (without marked points) is given by

dΓ1
= (γ̃.c1(Ỹ)) + (dim X − 3)(1 − g) + ρ − µ

= dβ + ρ − 2µ.

Since we chose the lifting (~ai)
k
i=0 of~a to have~ai = 0 for all i 6= 0, all inser-

tions contribute to Ỹ. If ρ 6= 0 then ρ − 2µ < 0. This leads to vanishing
relative GW invariant on (Ỹ, E). Therefore, ρ must be zero. To summarize,
we get

(3.3) 〈~a〉X
g,n,β = ∑

ψ̃∗(γ̃)=β

〈~a0 | ∅〉(Ỹ,E)
g,n,γ̃ ,

such that

(3.4) ψ̃∗γ̃ = β, γ̃.E = 0, γ̃Q = 0.

We note that this equation also holds for ai a divisor by the divisor axiom.

We use a similar argument to compute 〈~b〉Y
g,n,γ via the Kähler degener-

ation (2.2) Y  Ỹ ∪ Ẽ, where Ẽ is a disjoint union of Ẽi (cf. [16, Theo-
rem 4.10]). By the divisor equation we may assume that deg bj ≥ 3 for all

j = 1, . . . , n. We still choose the lifting (~b)k
i=0 of~b such that~bi = 0 for all

i 6= 0. In the lifting γ1 on Ỹ and γ2 on π : Ẽ = ∐i Ẽi → ∐i Ci, we must have
γ = φ∗γ1 + π∗γ2. The contact order is given by µ = (γ1.E) which has the
property that µ = 0 if and only if γ1 = φ∗γ (and hence γ2 = 0). If ρ 6= 0 we
still get

dΓ1
= dγ + ρ − 2µ < dγ

and the invariant is thus zero. This proves that

(3.5) 〈~b〉Y
g,n,γ = 〈φ∗~b | ∅〉(Ỹ,E)

g,n,φ∗γ,

such that

(3.6) φ∗γ̃ = γ, γ̃.E = 0, γ̃Ẽ = 0.

To combine these two degeneration formulas together, we notice that in
the Kähler degeneration, γ̃ ∈ NE(Ỹ) can have contact order µ = (γ̃.E) = 0
if and only if γ̃ = φ∗γ for some γ ∈ NE(Y) (indeed for γ = φ∗γ̃). Choose
~b = ι(~a) and the formula in the proposition follows.

The vanishing statement (of H0 insertion) follows from the fundamental
class axiom.
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Now we proceed to prove the finiteness of the sum. (This part is not
stated in [22].) For φ : Ỹ → Y being the blow-up along Ci’s, the curve
class γ ∈ NE(Y) contributes a non-trivial invariant in the sum only if φ∗γ
is effective on Ỹ. By combining (2.5), (3.3) and (3.5), the effectivity of φ∗γ
forces the sum to be finite. Equivalently, the condition that φ∗γ is effective
is equivalent to that γ is F-effective under the flop

Y //

��❃
❃❃

❃❃
❃❃

❃ Y′

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

X̄

(i.e. effective in Y and in Y′ under the natural correspondence [16]). Recall
that under the flop the flopping curve class in Y is mapped to the negative
flopping curve in Y′. Therefore, the sum is finite. �

Remark 3.2. (i) The phenomena, including finiteness of the sum, were ob-
served in [12] for Calabi–Yau hypersurfaces in weighted projective spaces
from the numerical data obtained from the corresponding B model gener-
ating function and mirror symmetry.

(ii) For general 3-folds extremal transitions worse than conifolds, the
double point degeneration formula does not apply directly. In general, the
relative GW invariants will enter the degeneration formula in an essential
way and can not be reduced to the absolute GW theory in a simple explicit
way as above. For example, in higher dimensions none of the complicated
features in the degeneration formula can be avoided.

Corollary 3.3. Gromov–Witten theory on even cohomology GWev(X) (of all gen-
era) can be considered as a proper sub-theory of GWev(Y).

In particular, the big quantum cohomology ring is functorial with respect to
ι : Hev(X) → Hev(Y) in (3.1).

Proof. We first note that ι is an injection on Hev. Proposition 3.1 then implies
that all Gromov–Witten invariants of X with even classes can be recovered
from invariants of Y. The only exception, H0, can be treated by the funda-
mental class axiom. Therefore, in this sense that GWev(X) is a sub-theory
of GWev(Y).

In genus zero, however, there is a more precise sense of being a sub-
theory via functoriality. Observe that the degeneration formula also holds
for β = 0. For g = 0, this leads to the equality of classical triple product on
Hinv(X) under ι:

(a, b, c)X = (ι(a), ι(b), ι(c))Y .

Since the Poincaré pairing on Hev(X) is also preserved under ι, we see that
the classical ring structure on Hev(X) are naturally embedded in Hev(Y).

To see the functoriality of the big quantum ring with respect to ι, we
note that (ι(a).Ci) = 0 for any a ∈ Hev(X) and for any extremal curve
Ci in Y. Furthermore, for the invariants associated to the extremal rays



22 Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

the insertions must involve only divisors by the virtual dimension count.
Hence in the level of generating functions with at least one insertion we also
have

∑
β∈NE(X)

〈~a〉X
β qβ = ∑

γ∈NE(Y)

〈ι(~a)〉Y
γqψ∗(γ).

Note that the case of H0 is not covered in Proposition 3.1, but can be treated
by the fundamental class axiom as above. �

Remark 3.4. It is clear that the argument and conclusion hold even if some
insertions lie in H3

inv(X)/V ∼= H3(Y) by Proposition 3.1.

The full GW theory is built on the full cohomology superspace H = Hev ⊕
Hodd. However, the odd part is not as well-studied in the literature as the
even one. In some special cases the difficulty does not occur for elementary
reasons.

Lemma 3.5. Let X be a smooth minimal 3-fold (e.g., Calabi–Yau threefold) with
H1(X) = 0. The non-trivial primary GW invariants are all supported on H2(X).

More generally the conclusion holds for any curve class β ∈ NE(X) with
c1(X).β ≤ 0 for any 3-fold X with H1(X) = 0.

Proof. For n-point invariants, the virtual dimension of Mg,n(X, β) is given
by

c1(X).β + (dim X − 3)(1 − g) + n ≤ n.

Since the appearance of fundamental class in the insertions leads to triv-
ial invariants, we must have the algebraic degree deg ai ≥ 1 for all inser-
tions ai, i = 1, . . . , n. Hence in fact we must have deg ai = 1 for all i and
c1(X).β = 0. �

Remark 3.6. By the divisor axiom, the primary GW theory for smooth min-
imal 3-folds is then completely reduced to the case without any insertions.

3.2. The even and extremal quantum cohomology. From now on, we re-
strict to genus zero theory.

3.2.1. For simplicity we restrict our discussions on insertions s = ∑ǫ sǫT̄ǫ ∈
H2(X) where T̄ǫ’s form a basis of H2(X). Then the genus zero GW pre-
potential is given by

(3.7) FX
0 (s) =

∞

∑
n=0

∑
β∈NE(X)

〈sn〉0,n,β
qβ

n!
=

s3

3!
+ ∑

β 6=0

nX
β qβe(β.s),

where nX
β = 〈〉X

0,0,β, with formal variables qβ’s. It can be considered as a

function in the “Kähler moduli” via identification

qβ = exp 2π
√
−1(β.ω),

where

ω = B +
√
−1H ∈ KX

C := H2(X) +
√
−1KX ,
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the complexified Kähler cone of X.
FX

0 (s) almost gives the small quantum cohomology of X. (By Lemma 3.5,
this is the same as big quantum cohomology if X is a Calabi–Yau threefold.)
In order to have the full small quantum cohomology ring, we will need to
consider s ∈ Hev(X) in the first term s3/(3!), which will be called classical,
topological or cubic terms. Namely, in terms of dual basis notations,

s = s0T̄0 + ∑
ǫ

sǫT̄ǫ +∑
ζ

sζ T̄ζ + s0T̄0 ∈ H0 ⊕ H2 ⊕ H4 ⊕⊕H6

and
s3

3!
=

1

3!

(

∑
ǫ

sǫT̄ǫ

)3
+

1

2
(s0)2s0 + s0 ∑

ǫ

sǫsǫ.

For simplicity of notation, and without loss of generality, we treat the divi-
sor variables first and bring back the other two topological terms when we
need to write down the complete Dubrovin connection.

Remark 3.7. The reader might consider all the following discussions are for
the big quantum cohomology of a Calabi–Yau threefolds, since that is the
case we will be primarily concerned with in the later sections.

Remark 3.8. In practice, the variables s and ω encode basically equivalent
information: By divisor axiom, qβ always appears in the form qβ exp(β, s).
If there is no convergence issue then it makes no essential difference to drop
out the Novikov variables by setting qβ ≡ 1 for all β.

3.2.2. Similarly we have FY
0 (t) on H2(Y)×KY

C . Here we use the variable

t = s + u ∈ H2(Y) = ι(H2(X))⊕
ρ
⊕

l=1

〈Tl〉.

Namely we identify s with ι(s) in H2(Y) and write u = ∑
ρ
l=1 ulTl . FY

0 can

be analytically continued across those boundary faces of KY
C which corre-

sponds to flopping contractions. In the case of conifold transitions Y ց X,
the boundary face is precisely KX

C ⊂ K̄Y
C.

Convention. The following convention of indices on Hev(Y) will be used
throughout the rest of this section:

• Lowercase Greek alphabets for indices from the subspace ι(Hev(X));
• lowercase Roman alphabets for indices from the subspace spanned

by the divisors Tl’s and exceptional curves Ci’s;
• uppercase Roman alphabets for variables from the total space Hev(Y).

For C ∼= P1 with twisted bundle N = OP1(−1)⊕2, the extremal function
is given by the well-known multiple cover formula

EC
0 (t) = ∑

d∈N

nN
d qd[C]ed(C.t) = ∑

d∈N

1

d3
qd[C]ed(C.t).
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We also consider the total (global) extremal function

EY
0 (t) :=

t3

3!
+

k

∑
i=1

ECi
0 (t) = EY

0 (u) +
1

3!
(t3 − u3),

where we notice that ECi
0 (t) = ECi

0 (u) depends only on u.
Then the degeneration formula is equivalent to the following restriction

FX
0 (s)− s3

3!
=
(

FY
0 (s + u)− (s + u)3

3!
− EY

0 (u) +
u3

3!

)∣

∣

∣

qγ 7→qψ∗(γ)
,

or equivalently the restriction of Kähler moduli to the boundary face KX
C .

Notice that the Novikov variables q[Ci]’s are subject to the relations: For

∑
k
i=1 aij[Ci] = 0 in NE(Y) with A = (aij) ∈ Mk×µ(Z) being the relation

matrix, we define

rj(q) := ∏
aij>0

qaij[Ci] − ∏
aij<0

q−aij[Ci]

and force the relation rj(q) = 0 for 1 ≤ j ≤ µ since they vanish trivially on
the Kähler moduli.

Summarizing the above discussion, we have

Lemma 3.9.

FY
0 (s + u) =

[

FX
0 (s) + EY

0 (u) +
1

3!
((s + u)3 − s3 − u3)

]

r j(q)=0, 1≤j≤µ

.

Convention. For simplicity of notation, we restrict the Novikov variables
implicitly and drop it from the notation henceforth.

A complete splitting of variables of the pre-potential function FY
0 would

imply that the big quantum cohomology QHev(Y) decomposes into two
blocks. One piece is identified with QHev(X), and another piece with con-
tributions from the extremal rays. However, the classical cup product terms
enter into the formula and destroy the complete splitting. Thus the two
pieces are not completely independent.

3.2.3. The structural coefficients for QHev(Y) are CPQR = ∂3
PQRFY

0 . We will

determine them according to the above splitting.
For FX

0 (s), the structural coefficients of quantum product are given by

Cǫζι := ∂3
ǫζιF

X
0 (s) = (T̄ǫ.T̄ζ .T̄ι) + ∑

β 6=0

(β.T̄ǫ)(β.T̄ζ)(β.T̄ι) nX
β qβe(β.s).
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Recall that B = (bip) with bip = (Ci.Tp) is the relation matrix for the

vanishing 3-spheres. For EY
0 (u), the triple derivatives are

Clmn := ∂3
lmnEY

0 (u)

= (Tl.Tm.Tn) +
k

∑
i=1

∑
d∈N

(Ci.Tl)(Ci.Tm)(Ci.Tn) qd[Ci]ed(Ci .u)

= (Tl.Tm.Tn) +
k

∑
i=1

bilbimbinf(q[Ci ] exp ∑
ρ

p=1
bipup).

(3.8)

Here

(3.9) f(q) = ∑
d∈N

qd =
q

1 − q
= −1 +

−1

q − 1

is the fundamental rational function with a simple pole at q = 1 with
residue −1. (f(q) plays an important role in our study of GW invariants
associated to a flopping contraction in [16] and subsequent works.)

However, due to the existence of possible cross terms, Clmn’s do not sat-
isfy the WDVV equations. Indeed, the remaining cross terms are

θ(s + u) :=
1

2
(s2u + su2) =

1

2
su2.

The first term s2u = 0 since Tl’s are chosen to be orthogonal to NE(X).
Then the only non-trivial mixed triple derivatives are constants (cup prod-
uct)

Cǫmn := ∂3
ǫmnθ(s + u) = (T̄ǫ.Tm.Tn).

Denote by T̄ǫ ∈ H4(X) the dual basis of T̄ǫ’s, and write

Tl, 1 ≤ l ≤ ρ,

the dual basis of Tl’s. Also T̄0 = T0 = 1 with dual T̄0 = T0 the point class.

Remark 3.10. The more canonical choice

T(l) :=
k

∑
i=1

bil [Ci]

is not the dual basis since

(T(l).Tm) =
k

∑
i=1

bil(Ci.Tm) =
k

∑
i=1

bilbim = (BtB)lm.

This implies that

T(l) =
ρ

∑
m=1

(BtB)lmTm.

This canonical basis will be useful later when we discuss the monodromy.
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Since

Hev(Y) = ι(Hev(X))⊕
(

ρ
⊕

l=1

QTl ⊕
ρ
⊕

l=1

QTl
)

is an orthogonal decomposition with respect to the Poincaré pairing on
H(Y), under our choice of basis we have four types of structural coeffi-
cients

Cι
ǫζ(s) = Cǫζι(s), Cn

lm(u) = Clmn(u),

Cn
ǫm = Cǫmn, Cǫ

mn = Cǫmn,
(3.10)

where the last two expressions are topological constants.
Now we need to bring back the missing topological terms

1

2
(s0)2s0′ + s0 ∑

ǫ

ulul′

where we relabel the indices by ul′ = ul and s0′ = s0. These give rise to a
few more non-trivial constant structural coefficients

C000′ = 1, Cmn′0 = δmn.

To close this subsection, we notice that in terms of the basis Tl’s with
coordinates u1, · · · , uρ the degeneration loci D of the GW theory consists of
the k hyperplanes defined by

Di :=

{

vi :=
ρ

∑
p=1

bipup = 0

}

.

Whenever ρ > 1, the divisor D =
⋃k

i=1 Di is not a normal crossing divisor.
Thus in order to study the monodromy effects of the degeneration there

are indeed k primitive monodromy transformations N(i)’s, which cross Di’s
respectively for 1 ≤ i ≤ k (to be studied in Lemma 3.12). Geometrically Di

is the Kähler degenerating locus at which Ci shrinks to zero volume.

3.3. The Dubrovin connection.

3.3.1. The Dubrovin connection on THev(Y)

∇z = d − 1

z ∑
P

dtP ⊗ TP∗

with respect to this basis restricts to the Dubrovin connection on THev(X).
For the other part with basis Tl’s and Tl’s, we have

z∇z
∂l

Tm = −δlmT0,

z∇z
∂l

Tm = −
ρ

∑
n=1

Clmn(u)T
n − ∑

ǫ

ClmǫT̄ǫ,

z∇z
∂ǫ

Tm = −
ρ

∑
n=1

CǫmnTn.

(3.11)
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The second equation shows that the connection does not preserve the sub-
bundle spanned by Tm’s and Tn’s even along the u1, · · · , uρ coordinates.

Let

τ = τ0 + τ1 + τ2 ∈ H0(Y)⊕ H2(Y)⊕ H4(Y) = Hev(Y).

The TRR (topological recursive relation) implies that a complete basis of
flat sections are given by the derivatives of the big J function

JY(τ, z−1) = e
τ0+τ1

z ∑
γ,n,P

qγ

n!
e(τ

1.γ)TP

〈

TP

z(z − ψ)
, (τ2)n

〉Y

0,n+1,γ

.

That is,
z∂P z∂Q J = ∑ CR

PQ z∂R J,

known as the quantum differential equation.
Notice that on the H2 directions we have

z∂I J = e
τ0+τ1

z ∑
γ,n,P

(

TI + z(γ.TI)
) qγ

n!
e(τ

1.γ)TP

〈

TP

z(z − ψ)
, (τ2)n

〉Y

0,n+1,γ

.

In fact modulo Novikov variables J(τ, z−1) ≡ eτ/z and hence z∂I J ≡ TI eτ/z

for any TI ∈ Hev(Y). Similarly, z∂I z∂J J ≡ TI .TJ eτ/z.

3.3.2. It will be instructive to first study monodromy transformation even
though we are seeking for information beyond monodromy. In mirror
symmetry, one is interested in “large Kähler structure limit” or “maximal
Kähler degeneration” in the sense that qγ → 0 for any γ 6= 0. From Re-
mark 3.8, we know that when the Novikov variables are omitted, their
corresponding analytic properties can be read out from the divisorial pa-
rameter τ1 Let qI = exp tI . From the expression of the flat sections z∂P J’s,
the monodromy are all contributed from the exponential factor

exp τ1/z = exp ∑
I

tI TI/z = exp ∑
I

log qI

z
TI .

Thus the nilpotent monodromy transformation along the divisor qI = 0 is

NI =
2π

√
−1

z
TI ∪ .

For Calabi–Yau or smooth minimal 3-folds, the big J function is equal
to the small J function by virtual dimension count. Equivalently, the cor-
responding flat sections for the extremal part are easily seen to be given
by

σm = Tm +
1

z
umT0,

σm = Tm +
1

z ∑ Cmn(u)T
n +

1

z ∑ Cmǫ(u)T̄
ǫ +

1

z2
Cm(u)T

0.

Here Cmǫ(u) = ∑n Cǫmnun is linear. Other terms are derivatives of EY
0 (u).
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Our case of crepant extremal contraction to ordinary double points cor-
responds to “small Kähler structure limit” or “minimal Kähler degener-
ation”. The singular part comes from different sources. For the bound-
ary face of the complexified Kähler cone defined by one linear equation

∑ bIt
I = 0, we have the corresponding ∏ qbI

I = 1. Thus if τ1 lies in such a

boundary face, the summation over γ with (τ1.γ) = 0 may possibly leads
to divergent series. Its leading logarithmic term then gives rise to the nilpo-
tent part of the monodromy transformation.

In the original connection form, the nilpotent monodromy Nl = (Nl,mn) ∈
Mρ×ρ is seen to be 2π

√
−1 times the residue matrix of the connection. And

in our concrete case along ul = 0 it is precisely

Nl,mn = −2π
√
−1

z
Res
ql=1

Clmn.

Example 3.11. In the fundamental special case ρ = 1, namely ψ : Y → X̄
is a primitive contraction, we have all m = n = ρ = 1 and the nilpotent
monodromy is of the form

N = Nl =

(

0 Nl,11

0 0

)

determined by one entry. There is only one vector B = B1 = (b1, · · · , bk)
t,

and for q := et we can easily determine the residue as

Nl,11 = −2π
√
−1

z

k

∑
i=1

b3
i Res

q=1

−1

qbi − 1
=

2π
√
−1

z

k

∑
i=1

b2
i =

2π
√
−1

z
|B1|2.

Here the Novikov variables are omitted.
Notice that the calculation is still valid even if some bi = 0. However, for

Calabi–Yau threefolds this never occurs since the small resolution Y → X̄
exists if and only if there are strictly non-trivial relations among the van-
ishing spheres in X [34], and for ρ = 1 there is precisely only one relation

∑
k
i=1 bi[Si] = 0.

In the general case the discriminant loci D =
⋃k

i=1 Di is not a normal

crossing divisor. But the monodromy transformation N(i) associated to Di

can be determined in a similar manner. In fact for any I ⊂ {1, · · · , k} and
DI :=

⋂

i∈I Di we may study the one parameter Kähler degeneration to-
wards DI and determine its monodromy.

Lemma 3.12. In terms of {Tn} and dual basis {Tn}, the nilpotent monodromy

N(i) along the degenerate divisor Di defined by vi = ∑
ρ
p=1 bipup = 0 is given by

N(i),mn =
2π

√
−1

z
bimbin.
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Proof. Since ∂ul = ∑
k
i=1(∂vi/∂ul)∂vi

= ∑
k
i=1 bil∂vi

, we get

N(i),mn = −2π
√
−1

z
bimbin Res

vi=0

−1

evi − 1

which gives the result. �

Corollary 3.13. In terms of {Tn} and dual basis {Tn}, the nilpotent monodromy

Nl at u = 0 around ql := exp ul = 1 is given by

Nl =
2π

√
−1

z
Bt

l Bl,

where Bl be the sub-matrix of B consisting of those i-th rows with bil 6= 0.

Proof. This follows from Lemma 3.12. We may also prove it directly. To

determine Nl,mn along the hyperplane ql = 1 in the Kähler moduli (ul = 0
in the Kähler cone), at the point qp = 1 for all p (up = 0), we compute

Nl,mn = −2π
√
−1

z

k

∑
i=1

bilbimbin Res
q=1

−1

qbil − 1

=
2π

√
−1

z

k

∑
bil 6=0; i=1

bimbin =
2π

√
−1

z
(Bt

l Bl)mn.

�

4. PERIODS AND GAUSS–MANIN CONNECTIONS

From this section and on, unless stated otherwise, we will assume the
Calabi–Yau condition:

KX
∼= OX , H1(OX) = 0.

4.1. Deformation theory. The main references for this subsection are [14,
30], though we follow the latter more closely.

Let ΩX̄ be the sheaf of Kähler differential and

ΘX̄ := Hom(ΩX̄,OX̄)

be its dual. The deformation of X̄ is governed by Ext1(ΩX̄,OX̄). By local to
global spectral sequence, we have

0 → H1(X̄, ΘX̄)
λ→ Ext1(ΩX̄,OX̄)

→ H0(X̄,Ext1(ΩX̄,OX̄))
κ→ H2(X̄, ΘX̄).

(4.1)

Since Ext1(ΩX̄,OX̄) is supported at the ordinary double points pi’s, we
have

H0(X̄,Ext1(ΩX̄,OX̄)) =
k
⊕

i=1

H0(Opi
)

by an easy local computation.
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We rephrase the deformation theory on X̄ in terms of the log deformation
on Ỹ. Denote by E ⊂ Ỹ the union of the exceptional divisors of ψ̃ : Ỹ → X̄.

Lemma 4.1.

Rψ̃∗KỸ = ψ̃∗KỸ = KX̄

and hence

H0(KỸ)
∼= H0(KX̄)

∼= C.

Proof. Apply the Serre duality for the projective morphism ψ̃ and we have

Rψ̃∗KỸ
∼= (ψ̃∗OỸ ⊗ KX̄)

∨.

Since X̄ is normal rational Gorenstein, ψ̃∗OỸ
∼= OX̄. This proves the first

equation from which the first part of the second equation follows immedi-
ately. The second part of the second equation follows from the Calabi–Yau
condition KX̄

∼= OX̄ . �

Lemma 4.2.

Ω2
Ỹ
(log E) ∼= KỸ ⊗ (ΩỸ(log E)(−E))∨ .

Proof. On Ỹ there is a perfect pairing

ΩỸ(log E)⊗ Ω2
Ỹ
(log E) → KỸ(E).

Since Ỹ is nonsingular and E is a disjoint union of nonsingular divisors, all
sheaves involved are locally free. Hence the lemma follows. �

Lemma 4.3 ([30, Lemma 2.5]).

Lψ̃∗ΩX̄
∼= ψ̃∗ΩX̄

∼= ΩỸ(log E)(−E),

where Lψ̃∗ is the left-derived functor of the pullback map.

Proof. The second isomorphism can be seen by a local calculation of the
blowing-up of an ordinary double point. The first isomorphism follows
from the facts that X̄ is a local complete intersection and an explicit two-
term resolution of ΩX̄ exists. We sketch the argument here and refer to [30]
for more details. Locally near a node, defined by x2

1 + · · ·+ x2
4 = 0, one has

0 → O
2~x−→ O

4 → Ω → 0.

Pulling it back to Ỹ, we see that

ψ̃∗(2~x) : O → O
4

is injective on Y and therefore higher left-derived functors are zero. �

Lemma 4.4 ([30, Proposition 2.6]).

RHom(ΩX̄ , KX̄)
∼= Rψ̃∗Ω2

Ỹ
(log E).

In particular,

Ext1(ΩX̄, KX̄)
∼= H1(Ω2

Ỹ
(log E)).
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Proof. By Lemma 4.2, we have

Rψ̃∗Ω2
Ỹ
(log E) ∼= Rψ̃∗Hom(ΩỸ(log E)(−E), KỸ).

By Lemma 4.3 and the projection formula, the RHS is isomorphic to

RHom(ΩX̄ , Rψ̃∗KỸ)
∼= RHom(ΩX̄ , KX̄)

with the last isomorphism coming from Rψ̃∗KỸ
∼= KX̄ in Lemma 4.1. �

From the general deformation theory, the first term H1(X̄, ΘX̄) in (4.1)
parameterizes equisingular deformation of X̄. Thanks to the theorem of
Kollár and Mori [15] that this extremal contraction deforms in families, this
term parameterizes the deformation of Y. Therefore, the cokernel of λ in
(4.1), or equivalently the kernel of κ, corresponds to the deformation of
singularity. Since the deformation of X̄ is unobstructed [14], Def(X̄) has
the same dimension as Def(X), which is h2,1(X). Comparing the Hodge
number h2,1 of X and Ȳ (cf. Section 2) we have the dim ker(κ) = µ.

Proposition 4.5.

0 → H1(X̄, ΘX̄)
λ→ Ext1(ΩX̄ ,OX̄) → V∗ → 0

Proof. The residue exact sequence on Ỹ goes as

0 → ΩỸ → ΩỸ(log E)
res−→ OE → 0.

Taking wedge product with ΩỸ, we have

0 → Ω2
Ỹ
→ Ω2

Ỹ
(log E)

res−→ ΩE → 0.

Part of the cohomological long exact sequence reads

H0(ΩE) → H1(Ω2
Ỹ
) → H1(Ω2

Ỹ
(log E)) → H1(ΩE)

κ−→ H2(Ω2
Ỹ
).

Since H1(E) = 0, the first term vanishes. By Lemma 4.4, the third term is
equal to Ext1(ΩX̄,OX̄). Indeed, it is not hard to see that this exact sequence
is equal to that in (4.1) (cf. [30, (3.2)]).

Using similar arguments in Section 2, especially Section 2.2.2, we have

0 → H1(Ω2
Ỹ
) → H1(Ω2

Ỹ
(log E)) →

k
⊕

i=1

〈(ℓi − ℓ
′
i)〉

κ̄−→
H2(Ω2

Ỹ
)

⊕k
i=1〈(ℓi + ℓ′i)〉

.

Recall that, from (2.4) and Lemma 2.6 (ii), we have

H2(Ỹ)
δ̄2−→

k
⊕

i=1

〈(ℓi − ℓ
′
i)〉 → V → 0.

Now compare the dual the map δ̄2 and κ̄, we see that

ker(κ) = cok(δ̄2)
∗ = V∗.

The proof is complete. �
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This proposition shows that the deformation of Y naturally embeds to
that of X̄, with the transversal direction given by the periods of the vanish-
ing cycles. Moreover, the above discussion also leads to important conse-
quences on the infinitesimal period relations on Ỹ and on X̄.

Corollary 4.6. On Ỹ, the natural map

H1((ΩỸ(log E)(−E))∨)⊗ H0(KỸ) → H1(Ω2
Ỹ
(log E))

coming from infinitesimal log deformations of (Ỹ, E) is an isomorphism.

Proof. This follows from Lemma 4.1 and Lemma 4.2. �

Corollary 4.7. On X̄, the natural map

H1(RHom(ΩX̄ ,OX̄))⊗ H0(KX̄) → Ext1(ΩX̄, KX̄)

coming from infinitesimal deformations of X̄ is an isomorphism.
Indeed, both the LHS and RHS are isomorphic to Ext1(ΩX̄,OX̄).

Proof. This is a reformulation of Corollary 4.6 via Lemma 4.4. �

Since X̄ is rational Gorenstein, RHom(ΩX̄ ,OX̄) has cohomology only in
degrees 0 and 1. Indeed, R0

Hom(ΩX̄ ,OX̄)
∼= ΘX̄ by definition and

R1
Hom(ΩX̄ ,OX̄)

∼= Ext1(ΩX̄,OX̄)
∼=

k
⊕

i=1

Opi
.

Therefore, by a Leray spectral sequence argument, this gives (4.1) as well
and

H1(RHom(ΩX̄ ,OX̄))
∼= Ext1(ΩX̄,OX̄).

Interpreting Corollary 4.7 as a local Torelli type theorem, we conclude
that the differentiation of the holomorphic 3-forms on any deformation pa-
rameter of X̄ is non-vanishing.

4.2. Vanishing cycles and the Bryant–Griffiths/Yukawa cubic form.

4.2.1. Recall the Gauss–Manin connection ∇GM on the bundle

H
n = Rn f∗C ⊗OS → S

for a smooth family f : X → S is a flat connection with its flat sections
being identified with the local system Rn f∗C. It contains the integral flat
sections Rn f∗Z. Let {δp ∈ Hn(X, Z)/(torsions)} be a homology basis for a
fixed reference fiber X = Xs0 , with cohomology dual basis δ∗p’s in Hn(X, Z).
Then δ∗p can be extended to (multi-valued) flat sections in Rn f∗Z. For η ∈
Γ(S,Hn), we may rewrite it in terms of these flat frames with coefficients
being the “multi-valued” period integrals “

∫

δp
η” as

η = ∑
p

δ∗p

∫

δp

η.
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Let (xj) be a local coordinate system in S. Since ∇GMδ∗p = 0, we get

∇GM
∂/∂xj

η = ∑
p

δ∗p
∂

∂xj

∫

δp

η.

Thus as far as period integrals are concerned, we may simply regard the
Gauss–Manin connection as partial derivatives.

When the family contains singular fibers, by embedded resolution of sin-
gularities we may assume that the discriminant loci D ⊂ S is a normal
crossing divisor. It is well-known that the Gauss–Manin connection has at
most regular singularities along D by the regularity theorem. Namely it
admits an extension to the boundary with at worst logarithmic poles.

4.2.2. We move on to investigate the partial compactification of the com-
plex moduli space MX of X towards the conifold degeneration boundary,
i.e., in the neighborhood of [X̄] ∈ MX̄. In particular, we will study the cor-
responding logarithmic structure of the Gauss–Manin connection near the
moduli point [X̄].

Based on Proposition 4.5 and the theory of Bryant and Griffiths, we will
show that periods of vanishing cycles give rise to a natural coordinate system
of the deformations of X in the transversal directions towards the boundary
containing the point [X̄] with the same singularity type. On the contrary,
the monodromy invariant periods lift to the central fiber by the invariant
cycle theorem. The central fiber cohomology is related to H(Y) through the
calculation in Section 2. In particular, the invariant Gauss–Manin system
gives the Gauss–Manin system on Y. The details of this outline will be
spelled out in the rest of the section.

Our setting, as before, is a projective conifold transition X ր Y. We have
seen that (c.f. Remark 2.10 and the convention following it)

H3(X) ∼= H3(Y)⊕ V ⊕ V ′,

where V ⊕ V ′ ∼= H3(Y)⊥, V and V ′ are isotropic subspaces and are dual to
each other under intersection pairing. In particular, V ′ ∼= V∗ via Poincaré
duality. Recall that A = (aij) ∈ Mk×µ(Z) is the (rank µ) relation matrix of

the exceptional curves Ci’s. We choose a basis {γj}µ
j=1 of V ′ by requiring

that

PD(γj)([Si]) ≡ (γj.Si) = aij, 1 ≤ j ≤ µ,

where Si’s are the vanishing 3-spheres. Additionally, let {Γj}µ
j=1 be the basis

of V dual to {γj}µ
j=1 via intersection pairing. Namely (Γj.γl) = δjl .

Remark 4.8. The expression Γj = ∑
k
i=1 cij[Si] is by no means unique. The

more natural choice Γ(j) := ∑
k
i=1 aij[Si] does not give the dual. Instead,

(PD(γl), Γ(j)) =
k

∑
i=1

aij(γl.Si) =
k

∑
i=1

aijail = (At A)jl.
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Lemma 4.9. We may construct a symplectic basis of H3(X):

α0, α1, · · · , αh, β0, β1, · · · , βh, (αj.βp) = δjp,

where h = h2,1(X), with

αj = Γj, 1 ≤ j ≤ µ.

Proof. Notice that V ⊂ H3(X, Z) is generated by [S3
i ]’s, and hence is totally

isotropic. Let W ⊃ V be a maximal isotropic subspace (of dimension h+ 1).
We first select αj = Γj for 1 ≤ j ≤ µ to form a basis of V. We then extend it
to α1, · · · , αh, and set α0 ≡ αh+1, to form a basis of W.

To construct βl , we start with any δl such that (αp.δl) = δpl. Such δl’s
exist by the non-degeneracy of the Poincaré pairing. We set β1 = δ1. By
induction on l, suppose that β1, · · · , βl have been constructed. We define

βl+1 = δl+1 −
l

∑
p=1

(δl+1.βp)αp.

Then it is clear that (βl+1.βp) = 0 for p = 1, · · · , l. �

With a choice of basis of H3(X), any element η ∈ H3(X, C) ∼= C2(h+1) is
identified with its “coordinates” given by the period integrals

~η =
(

∫

αp

η,
∫

βp

η
)

.

Alternatively, we denote the cohomology dual basis by α∗
p and β∗

p so that

α∗
j (αp) = δjp = β∗

j (βp). Then we may write

η =
h

∑
p=0

α∗
p

∫

αp

η + β∗
p

∫

βp

η.

The symplectic basis property implies that

α∗
p(Γ) = (Γ.βp), β∗

p(Γ) = −(Γ.αp) = (αp.Γ).

This leads to the following observation.

Lemma 4.10. For 1 ≤ j ≤ µ, we may modify γj by vanishing cycles to get

γj = β j.

In particular, (γj.γl) = 0 for 1 ≤ j, l ≤ µ and α∗
j (Si) = (Si.β j) = −aij.

The following lemma will be useful.

Lemma 4.11. For all i = 1, . . . , k,

PD([Si]) = −
µ

∑
j=1

aij PD(Γj).

Proof. Comparing both sides by evaluating at αl’s and βl’s for all l. �
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4.2.3. Let Ω be the nonvanishing holomorphic 3-form on the Calabi–Yau
threefold. Bryant–Griffiths in [3] showed that the α-periods xp =

∫

αp
Ω

form the projective coordinates of the image of the period map inside

P(H3) ∼= P2h+1

as a Legendre sub-manifold of the standard holomorphic contact structure.
It follows that under such coordinates there is a holomorphic pre-potential
function u(x0, · · · , xh), which is homogeneous of weight two, such that

(4.2) uj ≡
∂u

∂xj
=
∫

β j

Ω.

In fact,

(4.3) u = 1
2

h

∑
p=0

xpup = 1
2

h

∑
p=0

xp

∫

βp

Ω.

Hence

Ω =
h

∑
p=0

(xp α∗
p + up β∗

p).

In particular, further differentiations in xj’s lead to

∂jΩ = α∗
j +

h

∑
p=0

ujp β∗
p, ∂2

jlΩ =
h

∑
p=0

ujlp β∗
p.

By the Griffiths transversality, ∂jΩ ∈ F2, ∂2
jlΩ ∈ F1, and all are orthogonal

to F3. Hence we have the Bryant–Griffiths cubic form, which is homogeneous
of weight −1:

ujlm = (∂mΩ.∂2
jlΩ) = ∂m(Ω.∂2

jlΩ)− (Ω.∂3
jlmΩ) = −(Ω.∂3

jlmΩ).

This is also known as Yukawa coupling in the physics literature.
We might need to work with moduli parameters which correspond to

inhomogeneous coordinates zi = xi/x0. The corresponding formulae may
be deduced from the homogeneous ones by the following fact:

Lemma 4.12. For any multi-index I, ∂I u is homogeneous of weight 2 − |I|.

The following proposition shows that, under a suitable choice of the
holomorphic frames respecting the Hodge filtration, the Bryant–Griffiths–
Yukawa couplings determine the VHS as the structural coefficients of the Gauss–
Manin connection.

Proposition 4.13. Consider the successive holomorphic frame τ0 = Ω ∈ F3,
τj = ∂jΩ ∈ F2, τ j = β∗

j − (xj/x0)β∗
0 ∈ F1 for 1 ≤ j ≤ h, and τ0 = β∗

0 ∈ F0.
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Then for 1 ≤ p, j ≤ h,

∇∂p
τ0 = τp,

∇∂p
τj =

h

∑
m=1

upjm τm,

∇∂p
τ j = δpj τ0,

∇∂p
τ0 = 0.

(4.4)

Proof. We prove the second formula. Since upj has weight 0, we have the

Euler relation x0 upj0 + ∑
h
m=1 xm upjm = 0. Hence

∂p∂jΩ =
h

∑
m=1

upjm β∗
m + upj0 β∗

0

=
h

∑
m=1

upjm

(

β∗
m − xm

x0
β∗

0

)

=
h

∑
m=1

upjm τm.

It remains to show that τ j ∈ F1. By the Hodge–Riemann bilinear relations,

it is enough to show that τ j ∈ (F3)⊥. This follows from

(τ j, Ω) =
(

β∗
j −

xj

x0
β∗

0,
h

∑
p=0

(xpα∗
p + upβ∗

p)
)

= −xj +
xj

x0
x0 = 0.

The remaining statements are clear. �

4.3. Degenerations via Picard–Lefschetz and the nilpotent orbit theorem.
Let X → ∆ be a one parameter conifold degeneration of threefolds with
nonsingular total space X . Let S1, · · · , Sk be the vanishing spheres of the
degeneration.. The Picard–Lefschetz formula asserts that the monodromy
transformation T : H3(X) → H3(X) is given by

(4.5) Tσ = σ +
k

∑
i=1

σ([Si])PD([Si]),

where σ ∈ H3(X). It is unipotent, with associated nilpotent monodromy

N := log T =
∞

∑
m=1

(T − I)m/m.

Since Si has trivial normal bundle in X, we see that (Si.Sj) = 0 for all i, j. In

particular T = I + N and N2 = 0. Indeed we have seen these in Section 2
through the Clemens–Schmid exact sequence. The main purpose in this
subsection is to extend the discussion to multi-dimensional degenerations,
and in particular for the local moduli MX̄ near [X̄].
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4.3.1. VHS with simple normal crossing boundaries. Even though the discrim-
inant loci for the conifold degenerations under our consideration are in
general not SNC divisors, by embedded resolution of singularity they can
be modified to become ones. Therefore, we will discuss this case first.

Let

X → ∆ := ∆ν × ∆ν′ ∋ t = (t, s)

be a flat family of Calabi–Yau 3-folds such that Xt is smooth for

t = (t, s) ∈ ∆
∗ := (∆×)ν × ∆ν′ .

Namely, the discriminant locus is a SNC divisor.

D :=
ν
⋃

j=1

Z(tj) = ∆ \ ∆
∗.

Around each punctured disk tj ∈ ∆×, 1 ≤ j ≤ ν, there is an associated
nilpotent monodromy Nj. Let

zj = log
tj

2π
√
−1

∈ H

be the coordinates in the upper half plane, and let

zN =
ν

∑
j=1

zjNj.

Note that NjNl = Nl Nj since π1(∆
∗) ∼= Zν is abelian.

If for any t = (t, s) we assume that Xt acquires at most canonical singu-
larities, then NjF

3
∞|Dj

= 0 and N2
j = 0 for each j (c.f. Remark 2.8). Differ-

ent Nj may define different weight filtration Wj and each boundary divisor
Z(tj) corresponds to different set of vanishing cycles. In our case, the struc-
ture turns out to be simple. The degeneration along the curve

w 7→ t(w) = (wn1 , · · · , wnν)

shows that (zN)2 = 0 for any z 6= 0. This, together with the commutativity
of Nj, then implies that Nj Nl = 0 for all j, l. For ODP (conifold) degen-
erations, this is also clear from the Picard–Lefschetz formula (4.5). Indeed
(Si1 .Si2) = 0 for all i1, i2 implies that NjNl = 0 for all j, l.

Let Ω denote the relative Calabi–Yau 3-form over ∆. By Schmid’s nilpo-
tent orbit theorem [32] (c.f. [37, 38]), a natural choice of Ω takes the form

Ω(t) = ezNa(t) = ezN
(

a0(s) +
ν

∑
j=1

aj(s)tj + · · ·
)

= a(t) + zNa(t) ∈ F3
t ,

(4.6)

where a(t) is holomorphic, Nja0(s) = 0 for all j.
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In order to extend the theory of Bryant–Griffiths to include the bound-
ary points of the period map, namely to include ODP degenerations in the
current case, we need to answer the question if the α-periods

θj(t) :=
∫

Γj

Ω(t)

may be used to replace the degeneration parameters tj for 1 ≤ j ≤ ν. For
this purpose we need to work on the actual local moduli space MX̄.

4.3.2. The case of one dimensional degeneration. It is helpful to first consider
the simplest situations that ν = µ = 1, ρ = k − 1. In this case, there is only
one (independent) vanishing cycle α1 = Γ1 = Γ, A = (ai1) ∈ Mk×1(Z) is a
column vector, and the degeneration direction is only one dimensional t1.
Then θ(t1, s) =

∫

Γ
Ω(t1, s) is a continuous, hence holomorphic, parameter.

By Corollary 4.7, ∂θ/∂t1 =
∫

Γ
∂t1

Ω is non-zero at t1 = 0. Hence we
may use t = (θ, s) as the new coordinate system by the implicit function
theorem. In terms of this new parameter t = θ, (4.6) leads to

Ω(t) = a0(s) + Γ∗t + h.o.t.+
t log t

2π
√
−1

NΓ∗

Here h.o.t. denotes terms in Γ⊥ which are at least quadratic in t. Then the
first derivatives of the pre-potential function up(t) are of the form

up(t) = up(s) + h.o.t.+
t log t

2π
√
−1

∫

βp

NΓ∗.

By the Picard–Lefschetz formula (4.5),

NΓ∗ =
k

∑
i=1

(Γ∗. PD([Si]))PD([Si]) = −
k

∑
i=1

ai1 PD([Si]),

where Lemma 4.10 is used in the last equality. Hence

∫

βp

NΓ∗ = −
k

∑
i=1

ai1(Si.βp) = δ1p

k

∑
i=1

ai1ai1 = δ1p At A = δ1p|A|2.

In particular, for p 6= 1, up(t) = up(s) + h.o.t., and

ut(t) = u1(t) = u1(s) +
|A|2

2π
√
−1

t log t + h.o.t..

Therefore the Yukawa coupling is of the expected form

uttt(t) =
|A|2

2π
√
−1

1

t
+ regular terms.
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4.3.3. Extending the Yukawa coupling towards boundary. Now we consider
the general case. As discussed in Section 4.1 and in the Introduction, X̄
has unobstructed deformations and the Kuranishi space MX̄ = Def(X̄) is
smooth. Since X̄ admits smoothing to X, the dimension of MX̄ is exactly
h = h2,1(X). The discriminant loci D ⊂ MX̄ is a divisor, which in general
may not be a normal crossing divisor. If we compare with the A model
picture on Y, which is discussed in the previous section, the discriminant
loci D is expected to the union of k hyperplanes.

Recall Friedman’s result [7] on partial smoothing of ODP’s in the follow-
ing form. Let A = [A1, · · · , Aµ] be the relation matrix. For any r ∈ Cµ, the
relation vector

A(r) :=
µ

∑
l=1

rl A
l

gives rise to a (germ of) partial smoothing of those ODP’s pi ∈ X̄ with
A(r)i 6= 0. Thus for 1 ≤ i ≤ k, the linear equation

(4.7) wi := ai1r1 + · · ·+ aiµrµ = 0

defines a codimension one hyperplane in Cµ:

Di := Z(wi)

Now the small resolution ψ : Y → X̄ leads to an embedding MY ⊂ MX̄

of codimension µ. As germs of analytic spaces we thus have

MX̄
∼= ∆µ ×MY ∋ (r, s).

Along each hyperplane Di ×MY, which will still be denoted by Di, there is

a monodromy operator T(i) with associated nilpotent monodromy N(i) =

log T(i). A degeneration from X to Xi with [Xi] ∈ Di a general point (not in

any other Di′ with i′ 6= i) contains only one vanishing cycle [S3
i ] 7→ pi. We

summarize the above discussion in the following lemma.

Lemma 4.14. Geometrically a point (r, s) ∈ Di corresponds to a partial smooth-
ing Xr of X̄ for which the i-th ordinary double point pi remains singular. Hence,
for r generic, the degeneration from X to Xr has only one vanishing sphere S3

i .

Moreover, the Picard–Lefschetz formula says that for any σ ∈ H3(X),

N(i)σ = (σ([S3
i ]))PD([S3

i ]).

The discriminant locus D =
⋃k

i=1 Di ⊂ MX̄ is not an SNC divisor,
though we can sometimes reduce a problem to the SNC case discussed
in Section 4.3.1 by embedded resolution of (MX̄ ,D). For example, let
D =

⋃ν
j=1 Z(tj) be an SNC divisor (locally) associated to the embedded

resolution such that t = (t, s) are the coordinates and Z(tj) the coordinate

hyperplanes. If the period integral
∫

Γ
Ω over a vanishing cycle Γ is a sin-

gle valued analytic function on ∆
∗ then, from (4.6), it admits continuous

extensions to ∆ and hence is holomorphic on ∆. This is equivalent to that
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∫

Γ
Nla(t) = 0 for all l, which follows easily from the mixed Hodge diamond

for Nl :

(4.8) H3(X) = V∗
l ⊕ V⊥

l , NlV
⊥
l = 0, NlV

∗
l ⊂ V⊥

l ,

where Vl = CΓl. Since this works for any local chart in the embedded
resolution, the conclusion also hold for a relative Calabi–Yau 3-form over
MX̄ in the original coordinate system (r, s). Namely, for any vanishing
cycle Γ, we get the holomorphicity of the α-period

∫

Γ
Ω(r, s).

However, we will need more precise information. As in the case of one
dimensional degenerations, we look for a formula of Ω in terms of holo-
morphic a(r, s), c.f. (4.6) in the case of one-dimensional degeneration. In-
stead of trying to reduce the problem to the SNC case, we will analyze it
directly by extending the nilpotent orbit theorem to the current non-SNC
case.

Following the general convention we call the configurationD =
⋃k

i=1 Di ⊂
MX̄ a central hyperplane arrangement with axis MY.

Theorem 4.15. Consider a degeneration of Hodge structures over ∆µ × M with

discriminant locus D =
⋃k

i=1 Di being a central hyperplane arrangement with

axis M. Let N(i) be the nilpotent monodromy around the hyperplane Di = Z(wi)
and suppose that the monodromy group Γ generated by N(i)’s is abelian. Let D

denote the period domain and Ď its compact dual.
Then the period map

φ : ∆µ × M \D → D/Γ

takes the following form

φ(r, s) = exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

ψ(r, s),

where ψ : ∆µ × M → Ď is holomorphic and horizontal.
In particular this applies to degenerations over MX̄ associated to conifold tran-

sitions X ր Y of Calabi–Yau 3-folds through the Calabi–Yau conifold X̄.

Proof. We prove the theorem by induction on µ ∈ N. The case µ = 1 is es-
sentially the one variable case (or SNC case) of the nilpotent orbit theorem.
The remaining proof consists of a careful bookkeeping on Schmid’s deriva-
tion of the multi-variable nilpotent orbit theorem from the one variable case
(c.f. [32, § 8], especially Lemma (8.34) and Corollary (8.35)).

The essential statement is the holomorphic extension of

(4.9) ψ(r, s) := exp

(

−
k

∑
i=1

log wi

2π
√
−1

N(i)

)

φ(r, s) ∈ Ď

over the locus D. For p 6∈ {0} × M, we can find a neighborhood Up of p
so that the holomorphic extension to Up is achieved by induction. Notice
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that the commutativity of N(i)’s is needed in order to arrange ψ(r, s) into
the form (4.9) with smaller µ. Namely,

ψ = exp



− ∑
wi(p)=0

log wi

2π
√
−1

N(i)







exp



− ∑
wi(p) 6=0

log wi

2π
√
−1

N(i)



 φ



 .

Let R≥1/2 := { (r, s) | |r| ≥ 1
2 }. Then we have a unique holomorphic

extension of ψ over R≥1/2. Now by the Hartog’s extension theorem we then
get the holomorphic extension to the whole space ∆µ × M. The statement
on horizontality follows from the same argument in [32, § 8]. �

In the case of conifold transition, the monodromy group is abelian. This
is can be easily seen by the Picard–Lefschetz formula (4.5) and the fact
[Si].[Si′ ] = 0 for all i and i′ for the vanishing spheres. Thus Theorem 4.15 is
applicable.

Remark 4.16. Let D =
⋃k

i=1 Di ⊂ Cµ be a central hyperplane arrangement

with axis 0. Then Cµ \D can be realized as (C×)k ∩ L for L ⊂ Ck being

a µ dimensional subspace. Since π1((C
×)k) ∼= Zk, a hyperplane theorem

argument shows that π1(C
µ \D) ∼= Zk, hence abelian, if µ ≥ 3.

For µ = 2, π1(C
2 \D) is not abelian if k ≥ 3. Indeed, the natural C×

fibration C2 \ ⋃k
i=1 Di → P1 \ {p1, · · · , pk} leads to

0 → π1(C
×) ∼= Z → π1(C

2 \
⋃

Di) → Z∗(k−1) → 0,

where the RHS is a k − 1 free product of Z. Thus the commutativity as-
sumption on Γ in Theorem 4.15 for µ = 2 might not be superfluous.

Remark 4.17. By studying the transformation of monodromy in the expo-
nential factor under a blowing-up, Theorem 4.15 can also be proved through
embedded resolutions to reduce the problem to the SNC case. We leave the
details to the interested readers.

Proposition 4.18. In a neighborhood of [X̄] ∈ MX̄, we may choose the coordinate
system (r, s) so that s is a coordinate system of MY near [X̄] and rj =

∫

Γj
Ω,

1 ≤ j ≤ µ, are the α-periods of the vanishing cycles.
Moreover, the section Ω(r, s) takes the form

Ω = a0(s) +
µ

∑
j=1

Γ∗
j rj + h.o.t.−

k

∑
i=1

wi log wi

2π
√
−1

PD([Si]).

Here h.o.t. denotes terms in V⊥ which are at least quadratic in r1, · · · , rµ, and

wi = ai1r1 + · · ·+ arµrµ =
∫

Si
Ω defines the discriminant locus Di for 1 ≤ i ≤ k.
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Proof. By Theorem 4.15 and the fact N(i1)N(i2) = 0, we may write

Ω(r, s) = exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

a(r, s)

= a(r, s) +
k

∑
i=1

log wi

2π
√
−1

N(i)a(r, s) ∈ F3
(r,s),

(4.10)

where a(r, s) = a0(s) + ∑
µ
j=1 aj(s) rj + O(r2) is holomorphic in r, s. Since

the integral
∫

Γl
vanishes on the sum (reasoning as in (4.8)), we have

θj :=
∫

Γl

Ω =
∫

Γl

a =
µ

∑
j=1

(

∫

Γl

aj(s)
)

rj + O(r2).

By Corollary 4.7, the µ × µ matrix

(τlj(s)) :=
(

∫

Γl

aj(s)
)

is invertible for all s. Thus, θ1, · · · , θµ and s form a coordinate system.
Now we replace rj by the α-period θj for j = 1, . . . , µ. In order for Theo-

rem 4.15 being applicable, we need to justify that the discriminant locus Di

is still defined by linear equations in rj’s. This follows form Lemma 4.11

∫

Si

Ω = (Ω, PD([Si])) = −
µ

∑
j=1

aij(Ω, PD(Γj)) = −
µ

∑
j=1

aijrj =: −wj.

Denote by h.o.t be terms in V⊥ which are at least quadratic in rj’s. The
above choice of coordinates implies that

Ω = a0(s) +
µ

∑
j=1

Γ∗
j rj + h.o.t.+

k

∑
i=1

µ

∑
j=1

log wi

2π
√
−1

N(i)Γ∗
j rj.

Then by Lemma 4.14 and 4.10,

µ

∑
j=1

N(i)Γ∗
j rj = −

µ

∑
j=1

aijrj PD([Si]) = −wi PD([Si]).

The proof is complete. �

In terms of the above coordinate system (r, s), we have β-periods

up(r, s) =
∫

βp

Ω = up(s) + h.o.t.−
k

∑
i=1

wi log wi

2π
√
−1

∫

βp

PD([Si])

(since Ω(s) = a0(s)). For 1 ≤ p ≤ µ we get

up(r, s) = up(s) + h.o.t.+
k

∑
i=1

wi log wi

2π
√
−1

aip.
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Otherwise we get simply

up(r, s) = up(s) + h.o.t.

The asymptotic of the Yukawa coupling is then completely determined by
taking two more partial derivatives.

For example, for 1 ≤ p, m, n ≤ µ,

upm = O(r) +
k

∑
i=1

log wi + 1

2π
√
−1

aipaim,

upmn = O(1) +
k

∑
i=1

1

2π
√
−1

1

wi
aipaimain.

(4.11)

4.3.4. Monodromy calculations. As a simple consequence, we determine the
monodromy N(l) towards the coordinate hyperplane Z(rl) at r = 0. That
is the monodromy associated to the one parameter degeneration γ(r) along
the rl-coordinate axis (rl ∈ ∆ and rj = 0 if j 6= l). Let Il = {i | ail 6= 0} and
let Al be the sub matrix of A consisting of those i-th rows with i ∈ Il.

Lemma 4.19. The sphere S3
i vanishes in Z(rl) along transversal one parameter

degenerations γ if and only if i ∈ Il, i.e., ail 6= 0.

Proof. The curve γ lies in Di = Z(wi) if and only if ail = 0. Thus for those
i 6∈ Il, the ODP pi is always present on Xγ(r) along the curve γ. In particular
the vanishing spheres along γ are precisely those Si with i ∈ Il. �

To calculate the monodromy N(l), recall that (c.f. Lemma 4.10)

Γ∗
j ≡ α∗

j = −PD(β j), Γ(j) =
k

∑
i=1

aij[Si].

The Picard–Lefschetz formula (Lemma 4.14) then says that

N(l)Γ∗
j = ∑

i∈Il

(Γ∗
j . PD([Si]))PD([Si]) = − ∑

i∈Il

aij PD([Si]).

Remark 4.20. If Il = {1, · · · , k} consists of all the indices, then in terms of
the “more canonical choice” of basis Γ(j)’s of V we get

N(l)Γ∗
j = −PD(Γ(j)).

By column and row operations, it is always possible to arrange the relation
matrix A so that this holds for all l; namely Al = A for all l.

For 1 ≤ p ≤ µ,
∫

βp

N(l)Γ∗
j = − ∑

i∈Il

aij(Si.βp) = ∑
i∈Il

aijaip = (At
l Al)jp,

while for p = 0 or µ + 1 ≤ p ≤ h we have
∫

βp

N(l)Γ∗
j = 0.
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4.3.5. On framed logarithmic extensions. Under suitable choice of frame the
Yukawa couplings are the structural coefficients of the Gauss–Manin con-
nection. We will extend this result to the logarithmic Gauss–Manin connec-
tion associated to our conifold degenerations.

We seek for a frame of the bundle R3π∗C of a local family π : X → MX̄

near the Calabi–Yau conifold [X̄]. By Lemma 2.6 and the Hodge diamond
(2.9), part of the frame comes naturally from H3(Y), while the remaining
part is modeled on V∗ and V. To determine ∇GM (instead of the finer VHS
structure), we only need a topological (non-holomorphic) frame.

By the same procedure as in the proof of Proposition 4.18, the topological

frame modeled on V∗ ∼= H2,2
∞ H3 can be chosen to be

vj := exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

Γ∗
j

= Γ∗
J +

k

∑
i=1

log wi

2π
√
−1

N(i)Γ∗
j = Γ∗

j −
k

∑
i=1

log wi

2π
√
−1

aij PD([Si])

(4.12)

for 1 ≤ j ≤ µ. Notice that the correction terms lie in the lower weight piece

H1,1
∞ H3 and vj is independent of s. Moreover, vj is singular along Di if and

only if aij 6= 0, i.e., Si vanishes in Z(rj) by Lemma 4.19.

On V ∼= H1,1
∞ H3, we choose the (constant) frame by

(4.13) vj := exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

PD(Γj) = PD(Γj), 1 ≤ j ≤ µ.

From (4.7), (4.12) and Lemma 4.11, it is easy determine the Gauss–Manin
connection on this partial frame over the special directions ∂/∂rp’s:

∇GM
∂/∂rp

vm =
1

2π
√
−1

k

∑
i=1

aip

wi

(

− aim PD([Si])
)

=
1

2π
√
−1

k

∑
i=1

µ

∑
n=1

aipaimain

wi
vn.

(4.14)

Proposition 4.21. Near [X̄] ∈ MX̄, ∇GM is regular singular along Di’s and
smooth elsewhere. The connection matrix P on the block V∗ ⊕ V takes the form

P =
k

∑
i=1

dwi

wi
⊗ Pi

where

Pi =
µ

∑
m,n=1

aimain vn ⊗ (vm)
∗

is a constant matrix in the topological frame vm’s and vn’s.
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In contrast to (4.11), there are no higher order terms in rj’s. Moreover,

the off diagonal component of ∇GM from V∗ ⊕V to H3(Y) vanishes. These
will be restored in Section 6 once holomorphic frames are considered.

5. FROM A(X) + B(X) TO A(Y) + B(Y)

We explained in the last section that the Kuranishi space of Y can be
identified with the the equisingular part of the Kuranishi space of X̄. We
assume that the moduli point [X] is in the neighborhood of MY. The main task of
this section is to show that the A theory and B theory on X will determine
the A theory and B theory on Y.

For this paper, A(X) means the (all genus) Gromov–Witten theory on X;
B(X) means the variations of Hodge structure, or the Gauss–Manin con-
nection, on X (which is in a sense only genus zero part of the B theory).

5.1. Overview.

5.1.1. B(X) ⇒ B(Y). This was already explained: The VHS on Y is con-
tained in the VHS of X as part of the monodromy invariant theory under
the complex degeneration. This is the easy part of the implication.

5.1.2. A(X) + B(X) ⇒ A(Y). The rest of the section will be devoted to this
implication.

What we already know about A(Y) consists of the following three pieces
of data:

(1) A(X), which is given,

(2) the extremal ray invariants on divisors {Tl}ρ
l=1 determined by the

relation matrix B of the vanishing 3-spheres, and
(3) the topological cup product on H2(Y). Since Y comes from surgeries

on X along the vanishing spheres, this is determined classically.

We want to see if these are enough to determine A(Y). Indeed, from the
degeneration formula derived in Proposition 3.1, the major problem is that
the Gromov–Witten invariants on X can only determine a sum of Gromov–
Witten invariants on Y, but not the individual terms.

The ingredient (2) is, understandably, the extra information one has to
compute separately. As discussed in Section 3.2.2 for g = 0 case, the ex-
tremal ray invariants of all genera can be obtained from invariants of the
a single (−1,−1) curves by the relation matrix A. Therefore, the ingredi-
ents needed for (2) is local and independent of the transition. The genus
zero case was already discussed. The corresponding g = 1 invariants for
(−1,−1) curves was computed in [2] (which was justified in [10]) and g ≥ 2
invariants in [6].

Before proceeding to details, let us look into the genus zero case more
closely. Recall that

Hev(Y) = φ∗Hev(X)⊕ 〈T1, · · · Tρ, T1, · · · , Tρ〉.
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Let s̃ + ũ ∈ H(Y) be a class in Y according to the above splitting, and Let
s (resp. u) be the H2 component of s̃ (resp. ũ). The GW potential for the
Calabi–Yau 3-fold Y takes the form:

FY
0 (s̃ + ũ) =

(s̃ + ũ)3

3!
+ ∑

γ∈NE(Y)\{0}
nY

β+dℓ e(β.s)e(dℓ.u)

where γ = β + dℓ ∈ NE(Y) with β := ψ∗(γ) ∈ NE(X) being identified

with its canonical lift to Y so that (β.u) = 0 for all u = ∑ ulTl, and dℓ :=
∑i di[Ci]. (We omit the Novikov variables, cf. Remark 3.8.)

Notice that while di is not uniquely determined by γ, the sum ∑ di[Ci] is
unique as a class. Also

(dℓ.u) = ∑
i,l

(di[Ci].u
lTl) = ∑

i,l

dibilu
l = ~dtB~u.

Now, the above (1)–(3) gives the initial conditions on the two set of coordi-
nates slices u = 0 and “s = ∞” (i.e., β = 0) respectively.

Naively one may wish to reconstruct the genus zero GW theory on the
entire cohomology from these two slices. When Y is Fano, this is sometimes
possible by WDVV. However, WDVV gives no information for Calabi-Yau
3-folds. Thus, we have to find another way to solve the problem. This issue
will be resolved by studying the notion of linking data below.

5.2. Linking data. The homology and cohomology discussed in this sub-
section are over Z.

As a first step, we study the topological information about the holomor-

phic curves in X \ ⋃k
i=1 Si instead of in X. This can be interpreted as the

linking data between the curve C and the set of vanishing spheres
⋃k

i=1 Si.
We will see that the linking data add extra information to β = [C], and
enable us to recover the missing topological information in the process of
transition.

The reasons justifying this study are the following heuristics. It is a well
known result due to Seidel and Donaldson [33] that the vanishing sphere
Si can be chosen to be Lagrangian with respect to the prescribed Kähler
form ω on X. When ω is Ricci flat, it is expected to be able to find special
Lagrangian (SL) representatives for Si. Assuming that, we have

T[Si]Def(Si/X) ∼= H1(Si, R) = 0

by McLean’s theorem [25]. That is, Si is rigid in the SL category. Thus,
given a holomorphic curve C ⊂ X with [C] = β, we expect that

C ∩ Si = ∅ ∀i.

Furthermore, by a simple virtual dimensional count, this is known to hold
for a generic almost complex structure J on TX (cf. [8]). But we shall pro-
ceed by ignoring this technical issue for a moment.
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The plan is to assign a linking data L between C and Si’s so that L repre-
sents a refinement of β = [C] in X and that L uniquely determines a curve
class γ in Y, such that

(5.1) nX
β,L = nY

γ .

With the choices of lifting β in Y being fixed (as above), this is equivalent
to saying that L will uniquely determine a curve class dℓ ∈ N1(Y/X̄).

Remark 5.1. One possible way of defining the linking number is as follows.
Let

R = ker(
⊕

i∈I

ZSi → H3(X, Z)) ⊂ ZI

be the relation subgroup of the given spheres. For each r ∈ R we have

r = ∑
i∈I

riSi = ∂W

for some (non-unique) four dimensional chain W. The choices of W is only
up to elements in H4(X, Z). Let (C.H4(X, Z)) = m[C]Z. Then we may hope
to define the linking number through the residue intersection pairing

LC(r) ≡ L(C, r) := #(C.W) (mod m[C]).

Notice that m[C] = mβ depends only on the class β = [C] but the map
LC : R → Z/mβ does depend on the specific C, not just on its class, hence
it can be used to refine the curve class. However, the mod m[C] is a major
drawback as m[C] might be 1. In that case, LC gives no information. Instead,
we proceed by giving the homological description of the above procedure.

Let Di = Dǫ(NSi/X) be the ǫ open tubular neighborhood of Si in X with
ǫ small enough such that C ∩ Di = ∅ for all i. Then

∂Di = Sǫ(NSi/X) ∼= Si × S2
ǫ
∼= S3 × S2.

Let M be the manifold with boundary with DI :=
⋃

i∈I Di being removed:

M = MI := X\DI .

Remark 5.2. The Lagrangian spheres Si’s are allowed to intersect with each
other, though those S1, · · · , Sk which vanish in the conifold transition X ր
Y are pairwise disjoint (since the nodes are isolated).

We start with the simple case that I = {1, · · · , k}. Then the pair (M, ∂M)
is the common part for both X and Y. Indeed let D+

i = Dδ(NCi/Y), then

∂D+
i = Sδ(NCi/Y) ∼= S3

δ × Ci
∼= S3 × S2.

This leads to two deformation retracts

(Y,
⋃

Ci) ∼ (M, ∂M) ∼ (X,
⋃

Si).
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Now we consider the sequence induced by the Poincaré–Lefschetz dual-
ity and excision theorem for i : ∂M →֒ M (all with Z coefficients)

(5.2) H2(M, ∂M)
∼ // H4(M)

H2(C)
f∗ // H2(M)

j∗

OOOO

∼ // H4(M, ∂M)

j∗
OOOO

⊕

i H2(S
3
i × S2

i )
∼ //

i∗

OO

H3(∂M)

∆∗

OO

H3(M, ∂M)

∆∗

OO

∼ // H3(M).

i∗

OO

From the retract (M, ∂M) ∼ (Y,
⋃

Ci) and the excision sequence for (Y,
⋃

Ci)
we find

H3(M, ∂M) →
⊕

H2(Ci) → H2(Y) → H2(M, ∂M) → 0.

By comparing this with the LHS vertical sequence we conclude by the five
lemma that

H2(M) ∼= H2(Y).

In particular, the curve class in Y

γ := f∗[C] ∈ H2(M) ∼= H2(Y)

is well defined.

Definition 5.3. The linking data (β, L) is defined to be f∗([C]) = γ above.

For any non-canonical splitting of H2(Y) by a section of j∗, we may rep-
resent γ = βY + dℓ where the expression dℓ = ∑ diℓi is only well defined
up to curve relations coming from H3(Y,

⋃

Ci).
From the excision sequence (X,

⋃

Si), we have

0 → H3(M, ∂M) → H3(X) →
⊕

H3(Si) → H4(M, ∂M) → H4(X) → 0,

where the retract (M, ∂M) ∼ (X,
⋃

Si) is used. Comparing with the right
vertical sequence in (5.2), we find

H4(M) ∼= H4(X)

and h3(X) = h3(M) + k − ρ = h3(M) + µ. Since h3(X) = h3(Y) + 2µ, this
is equivalent to

(5.3) h3(M) = h3(Y) + µ.

Remark 5.4. Here we relate γ to the proposal in Remark 5.1. Now each non-
zero r ∈ R is an element in Z4(X,

⋃

Si) which is not in Z4(X). Indeed it
corresponds to an equivalence class in

Z4(X,
⋃

Si)

Z4(X)
∼= Z4(X,

⋃

Si)/B4(X)

Z4(X)/B4(X)
∼= H4(X,

⋃

Si)

j∗H4(X)
.
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Hence

R∗ ∼= ker j∗ ∼= H3(
⋃

Si)/i∗H3(X).

Thus the RHS vertical sequence gives a homological interpretation of R.
Since γ = f∗[C] ∈ H2(Y) ∼= H4(X,

⋃

Si) and γ is clearly a torsion free
class, by the universal coefficient theorem γ ∈ Hom(H4(X,

⋃

Si), Z). From

H4(X,
⋃

Si)։ H4(X,
⋃

Si)/j∗H4(X) ∼= R,

or equivalently R∗ ∼= ker j∗ as shown above, we see that γ should give rise
to a functional on R only if it restricts to zero values over H4(X). This is
surely not possible by the non-degeneracy of the Poincaré pairing. One
way to make this possible is to mod out the values (C.H4(X)) = mβZ as
we have just done. But in general the above discussion suggest that the
curve C in X and its associated class γ = f∗[C] in Y already represent the
correct notion of “linking data” on both sides respectively.

Remark 5.5. More generally, let

S := {Si | i ∈ I} ⊃ {S1, · · · , Sk}
be any given finite set of Lagrangian spheres containing the vanishing spheres
in X, and let

S′ := {S′
i′ | i′ ∈ I ′ := I\{1, · · · , k}}

with S′
j′ being the corresponding Lagrangian sphere in Y. It is clear that the

above procedure defines a more general linking data LS on X and L′
S′ on Y.

We also expect that

nX
β,LS

= nY
γ,L′

S′

to hold in the more general setting. Indeed, the proof of this is the same as
that of (5.1), which will be given later in this section.

5.3. Linked GW invariants on X = non-extremal GW invariants on Y.

5.3.1. Analysis of the moduli of stable maps to the degenerating families. Here we
recall some results in J. Li’s study of degeneration formula [20, 21]. Given
a projective flat family over a curve

π : W → A1

such that π is smooth away from 0 ∈ B and the central fiber W0 = Y1 ∪ Y2

has only double point singularity with D := Y1 ∩ Y2 a smooth (but not
necessarily connected) divisor, Li constructed a moduli stack in [20]

M(W, Γ) → A1

which has a perfect obstruction theory and hence a virtual fundamental
class [M(W, Γ)]virt in [21]. The following properties will be useful to us.
(The notations are slightly changed.)
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(1) For every 0 6= t ∈ A1, one has

M(W, Γ)t = M(X, β), [M(W, Γ)]virt
t = [M(X, β)]virt

where M(X, β) is the corresponding moduli of (absolute) stable maps.
(2) For the central fiber, the perfect obstruction theory on M(W, Γ) in-

duces a perfect obstruction theory on M(W0, Γ) and

[M(W0, Γ)]virt = [M(W, Γ)]virt ∩ π−1(0)

is a virtual divisor of [M(W, Γ)]virt.
(3) M(W0, Γ) and its virtual class are related to the relative moduli and

their virtual classes. For each admissible triple (consisting of gluing
data) ǫ, there is a ”gluing map”

Φǫ : M(Y1, D; Γ1)×Dρ M(Y2, D; Γ2) → M(W0, Γ),

inducing the relation between the virtual cycles

[M(W0, Γ)]virt = ∑
ǫ

mǫΦǫ∗∆!
(

[M(Y1, D; Γ1)]
virt × [M(Y2, D; Γ2)]

virt
)

,

where
∆ : Dρ → Dρ × Dρ

is the diagonal morphism and mǫ is a rational number (multiplicity
divided by the degree of Φǫ).

5.3.2. Decomposition of M(W0, Γ). We will study the properties of M(W0, Γ)
and their virtual fundamental classes in the setting of Section 3.1. A com-
prehensive comparison of the curve classes in X, Y and Ỹ is collected in the
following diagram.

H3(M, ∂M) //

=

��

H2(
⋃

i Ei) //

φ̄∗
��

H2(Ỹ) //

φ∗
��

H2(M, ∂M) //

=

��

0

=

��
H3(M, ∂M) //

=

��

H2(
⋃

i Ci) //

χ̄∗
��

H2(Y) //

χ∗
��

H2(M, ∂M) //

=

��

0

=

��
H3(M, ∂M) // 0 // H2(X) // H2(M, ∂M) // 0

It is easy to see that there is a unique lifting γ̃ of γ satisfying (3.4). From
this and the degeneration analysis we have the following lemma.

Lemma 5.6.
[M(Y, γ)]virt ∼ [M(Ỹ, D; γ̃)]virt,

where ∼ stands for ”homotopy equivalence”. 2 They define the same GW invari-
ants.

Because of this lemma, we will sometimes abuse the notation and identify
[M(Ỹ, D; γ̃)]virt with [M(Y, γ)]virt.

2If π can be extended to a family over P1, then the two cycles are rationally equivalent.
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Lemma 5.7. In the case of complex degeneration in Section 3.1, images of Φγ̃ for
different γ̃ are disjoint from each other.

Proof. This follows from Li’s study of the corresponding moduli stacks. In
this special case of ρ = 0, for any element in M(W0, Γ) there is only one
way to split it into two ”relative maps” (with one of them being empty).
We note that this is not true in general, when there are more than one way
of splitting of the maps to the central fiber. �

As discussed before, given β 6= 0, if γ̃ and γ̃′ both satisfy (3.4), in partic-
ular they are non-exceptional for ψ̃ : Ỹ → X̄, we have

γ̃ − γ̃′ = ∑
i

ai(ℓi − ℓ
′
i),

where ℓi and ℓ′i are the ψ̃ exceptional curve classes (two rulings) in Ei. By
Proposition 3.1, there are only finitely many nonzero ai.

For each γ̃ above, there is a unique γ in Y, which is non-extremal for
ψ : Y → X̄, such that γ̃ satisfies (3.6).

Corollary 5.8. Given β 6= 0 a curve class in X, we can associate to it sets of
non-ψ̃-exceptional curve classes γ̃ and γ discussed above. Then

[M(X, β)]virt ∼ ∑
γ̃

[M(Ỹ, D; γ̃)]virt ∼ ∑
γ

[M(Y, γ)]virt,

where ∼ stands for the homotopy equivalence and the summations are over the
above sets.

Notice that the conclusion holds for any projective small resolution Y of X̄.

Proof. This follows from (3.3), (3.5) and the above discussions. �

Recall in Section 5.2 we have the identification of the linking data in

(5.4) H2(Y
◦) = H2(Y) = H2(X

◦) = H2(X \ D) = H2(X̄ \ X̄sing)

where

X \
k
⋃

i=1

Si =: X◦ ∼ M ∼ Y◦ := Y \
k
⋃

i=1

Ci

and D is a tubular neighborhood of the union of vanishing S3’s

D =
⋃

i

Di
∼=
⋃

i

S3 × D3.

Therefore, a curve class γ ∈ H2(Y) can be identified as a ”curve class” in
X◦ ∼ X̄ \ X̄sing, with the latter a quasi-projective variety. Therefore, we can
think of γ as a curve class in X◦.

Proposition 5.9. For Xt with t ∈ A1 very small in the degenerating family

π : X → A1,
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we have a decomposition of the virtual class [M(Xt, β)]virt into a finite disjoint
union of cycles

[M(Xt, β)]virt = ∐
γ∈H2(X◦)

[M(Xt, γ)]virt,

where
[M(Y, γ)]virt ∼ [M(Xt, γ)]virt ∈ Avdim

(

M(Xt, β)
)

is a cycle class corresponding to the linking data γ of Xt.

Proof. By the construction of the virtual class of the family π, we know that
the virtual classes for Xt and for X0 are restrictions of that for X . Lemma
5.7 tells us that at t = 0, the virtual class decomposes into a disjoint union.
By semicontinuity of connected components, we conclude that the virtual
classes for Xt remain disconnected with (at least) the same number of con-
nected components labeled by γ ∈ H2(X◦). �

We call the numbers defined by [M(Xt, γ)]virt the refined GW numbers of
X◦ with linking data γ.

Corollary 5.10. The refined GW numbers of X◦ with linking data γ are the same
as the GW invariants of Y with curve class γ, where γ is interpreted in two ways
via (5.4).

This corollary shows that A(X) + B(X)classical ⇒ A(Y).

Remark 5.11. According to Fukaya [8], if one allows the deformation of the
almost complex structures J, the pseudo-holomorphic curves in a Calabi–
Yau threefold do not intersect any number of given Lagrangian S3 for generic
J. Those J’s for which some pseudo-holomorphic curves intersect some
vanishing S3 form a codimension 1 walls in the space of almost complex
structures. These walls divide the space of almost complex structures into
chambers. When one moves from one chamber to another, the wall cross-
ing effect consists of counting pseudo-holomorphic disks with boundaries
on the vanishing S3. That is, the difference between counting of pseudo-
holomorphic curves with J in one chamber and that with J in another is
accountable by pseudo-holomorphic disk counting.

The results above, in particular Proposition 5.9 can be interpreted in the
following way. If we know that the (integrable) complex structures in our
moduli lie in (the interior of) the chambers, then the curve classes will never
intersect the union of the vanishing S3’s. Therefore, the moduli of stable
maps with a fixed β has a natural partition into disjoint unions of those
with curve classes γ ∈ H2(X◦). Even though we do not know if this holds
in general, Proposition 5.9 says that this still holds at the level of virtual
classes when [X] is sufficiently close to [X̄] in the moduli. Once we move far
away from [X̄], the wall crossing is possible. Thus, the refined GW numbers
for (X◦, γ) are not symplectic invariants (with respect to X). In a work in
progress [18], we plan to prove a blowup formula for genus zero which will
cover any smooth blowups and some singular cases as well. That blowup



A + B THEORY IN CONIFOLD TRANSITIONS 53

will give A(X) + B(X)classical ⇒ A(Y), removing the constraint that [X]
must be sufficiently close to [X̄].

6. FROM A(Y) + B(Y) TO A(X) + B(X)

6.1. Overview.

6.1.1. A(Y) ⇒ A(X). As is explained in Section 3, A(X) is a sub-theory
of A(Y). Indeed, A(X) is obtained from A(Y) by setting all extremal ray
invariants to be zero, in addition to “reducing the linking data” γ ∈ NE(Y)
to β ∈ NE(X).

6.1.2. A(Y) + B(Y) ⇒ B(X). We have seen earlier that B(Y) can be con-
sidered as a sub-theory of B(X). In this section, we will show that B(Y),
together with the knowledge of extremal curves

⋃

i CI ⊂ Y uniquely de-
termines B(X). More precisely, we will show that the “Hodge filtration”
underlying the variation of MHS of the quasi-projective Y◦ = Y \ ⋃i Ci on
the first jet space of MY ⊂ MX̄ can be lifted uniquely to the Hodge filtra-
tion underlying the degenerating VHS of X. Furthermore, the information
of the Gauss–Manin up to the first jet is sufficient to uniquely single out the
VHS of X.

In the next subsection, we start with a statement of compatibility of MHS
which is needed in our discussion. After that we will give a proof showing
the unique determination. As in our implication of B(X) + A(X) ⇒ A(Y)
in Section 5, our A(Y) + B(Y) ⇒ B(X) implication is not constructive. It
seems likely that a constructive recipe of this determination can be worked
out by detailed analysis on the logarithmic model of degeneration of Hodge
bundles by Steenbrink in [35] (see also [5]).

6.2. Compatibility of the mixed Hodge structures. Recall from Section 4.1
that MX̄ is smooth and contains MX as an open subscheme with “bound-
ary” MX̄ \MX

∼= MY. Set

U := Y◦ = Y \
k
⋃

i=1

Ci
∼= X̄◦ = X̄ \ X̄sing

where X̄sing =
⋃k

i=1{pi}.
To construct the VHS with logarithmic degeneration on MX̄ near MY,

we start with the following lifting property.

Proposition 6.1. There is a short exact sequence of mixed Hodge structures

(6.1) 0 → V → H3(X) → H3(U) → 0,

where H3(X) is equipped with the limiting MHS of Schmid, V ∼= H1,1
∞ H3(X),

and H3(U) is equipped with the canonical mixed Hodge structure of Deligne.
In particular, F3H3(X) ∼= F3H3(U) and F2H3(X) ∼= F2H3(U).
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Proof. In the topological level, the short exact sequence (6.1) is equivalent
to the defining sequence of the vanishing cycle space (2.10). Indeed, since
X is nonsingular, H3(X) ∼= H3(X) by Poincaré duality. Also,

(6.2) H3(X̄) = H3(X̄, p) ∼= H3(Ỹ, E) ∼= H3(Ỹ\E) = H3(U)

by the excision theorem and Lefschetz duality.
Now we consider the mixed Hodge structures. Since U is smooth quasi-

projective, it is well know that the canonical mixed Hodge structure on
H3(U) has its Hodge diamond supported on the upper triangular part, i.e.,
with weights ≥ 3. Or equivalently, the MHS on H3(X̄) has weights ≤ 3
by duality in (6.2). The crucial point is that Lefschetz duality is compatible
with mixed Hodge structures, as stated in Lemma 6.2 below. Hence the
short exact sequence (6.1) follows from Lemma 2.6 which is essentially the
invariant cycle theorem.

Notice that V ∼= H1,1
∞ H3(X) by Lemma 2.6 (ii). In particular, the isomor-

phisms on Fi for i = 3, 2 follows immediately by applying Fi to (6.1). �

Lemma 6.2. Let Y be an n dimensional complex projective variety, i : Z →֒ Y a
closed subvariety with smooth complement j : U →֒ Y where U := Y\Z. Then
the Lefschetz duality

Hi(Y, Z) ∼= H2n−i(U)

is compatible with the canonical mixed Hodge structures.

This is well known in mixed Hodge theory, though we are not able to
locate an exact reference in the literature. For the readers’ convenience we
include a proof which is communicated to us by M. de Caltaldo.

Proof. We will make use of the structural theorem of Saito on mixed Hodge
modules (MHM) [31, Theorem 0.1] which says that there is a correspon-
dence between the derived categories of MHM and that of perverse sheaves
(c.f. Axiom A in 14.1.1 of Peters and Steenbrink’s book [28]).

There is a triangle in the derived category of constructible sheaves

j! j
!QY → QY → i∗i∗QY.

This triangle gives maps of MHS:

Hi(Y, Z) → Hi(Y) → Hi(Z)

with
Hi(Y, Z) = Hi(Y, j! j

!QY).

In fact, the MHS of Hi(Y, Z) can be defined by the RHS from Saito’s theory,
since j! j

!QY is a complex of MHM.
Dualizing the above setup, we have

(6.3) Hi(Y, Z) = Hi(Y, j! j
!QY)

∗,

where the LHS of (6.3) having MHS for the same reason as above and
compatibly with taking dual as MHS. Furthermore, the RHS of (6.3) is
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H−i
c (Y, j∗ j∗ωY) by Verdier duality, where ωY is the Verdier dualizing com-

plex. Due to the compactness of Y we have

H−i
c (Y, j∗ j∗ωY) = H−i(Y, j∗ j∗ωY) = H−i(U, ωU)

= HBM
i (U) = H2n−i(U),

where HBM is the Borel–Moore homology. Since every step above is com-
patible with MHM, it shows that the Lefschetz duality is compatible with
the MHS. �

6.3. Conclusion of the proof. We now apply the above result to our set-
ting. We have on X̄ (cf. [27])

· · · H1
X̄sing(ΘX̄) → H1(ΘX̄) → H1(U, TU) → H2

X̄sing(ΘX̄) → · · · .

Since each pi is a hypersurface singularity, we have depthOpi
= 3. Using

this fact, Schlessinger showed that

H1
p(ΘX̄) = 0 and H2

p(ΘX̄)
∼=

k
⊕

i=1

Cpi
.

Putting these together, we have

(6.4) 0 → H1(ΘX̄) → H1(U, TU) → H2
X̄sing(ΘX̄) → · · · .

Since X̄ is a Calabi–Yau 3-fold with only ODPs, its deformation theory is
unobstructed by the T1-lifting property [14]. Comparing (6.4) with (4.1) we
see that

Def(X̄) ∼= H1(U, TU).

Similarly, on Y we have

· · · H1
Z(TY) → H1(TY) → H1(U, TU) → H2

Z(TY) → H2(TY) → · · · .

Recall that Y is smooth Calabi–Yau and we have H1
Z(TY) = 0. Thus

Def(Y) = H1(TY) ⊂ H1(U, TU) ∼= Def(X̄).

MY is a natural submanifold of MX̄. Write I := IMY
as the ideal sheaf of

MY ⊂ MX̄.
Since H2(U, TU) 6= 0, the deformation of U could be obstructed. Nev-

ertheless, the first-order deformation of U exists and is parameterized by
H1(U, TU) ⊃ Def(Y). Therefore, we have the following smooth family

π : U → Z1 := ZMX̄
(I2) ⊃ MY,

where Z1 = ZMX̄
(I2) stands for the nonreduced subscheme of MX̄ defined

by the ideal sheaf I2. Namely Z1 is the first jet extension of MY in MX̄.
Now we may complete the construction of VHS over MX̄ near the bound-

ary loci MY →֒ MX̄. The Gauss–Manin connection for a smooth family
over non-reduced base was constructed in [13]. For our smooth family
π : U → Z1, it is defined by the integral lattice H3(U, Z) ⊂ H3(U, C).
Since U is only quasi-projective, the Gauss–Manin connection underlies
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VMHS instead of VHS. By Proposition 6.1, we have WiH
3(U) = 0 for i ≤ 2,

W3 ⊂ W4 with GrW
3 H3(U) ∼= H3(Y), and GrW

4 H3(U) ∼= V∗.
The Hodge filtration of the locally system F0 = H3(U, C) has the fol-

lowing structure: F• = {F3 ⊂ F2 ⊂ F1 ⊂ F0} which satisfies the Griffiths
transversality. Since KU

∼= OU and H0(U, KU) ∼= H0(Y, KY) ∼= C, F3 is a
line bundle over Z1 spanned by a nowhere vanishing relative holomorphic
3-form Ω ∈ Ω3

U/Z1
. Near the moduli point [Y] ∈ Z1, F2 is then spanned

by Ω and v(Ω) where v runs through a basis of H1(U, TU). Notice that
v(Ω) ∈ W3 precisely when v ∈ H1(Y, TY).

By Proposition 6.1, the partial Hodge filtration F3 ⊂ F2 on H3(U) over
Z1 lifts uniquely to a filtration F̃3 ⊂ F̃2 on H3(X) over Z1 with F̃3 ∼= F3 and
F̃2 ∼= F2. The complete lifting F̃• is then uniquely determined since

F̃1 = (F̃3)⊥

by the first Hodge–Riemann bilinear relation on H3(X). Alternatively, F̃1

is spanned by F̃2 and v(F̃2) for v runs through a basis of H1(U, TU).
Now F̃• over Z1 uniquely determines a horizontal map

Z1 → Ď.

Since it has maximal tangent dimension h1(U, TU) = h1(X, TX), it deter-
mines uniquely the maximal horizontal slice

ψ : M → Ď

with M ∼= MX̄ locally near MY. According to Theorem 4.15, namely an
extension of Schmid’s nilpotent orbit theorem, under the coordinates t =
(r, s), the period map

φ : Z× ∼= MX = MX̄\
⋃k

i=1
Di → D/Γ

is then given by

φ(r, s) = exp

(

k

∑
i=1

log wi

2π
√
−1

N(i)

)

ψ(r, s)

where Γ is the monodromy group generated by the local monodromy N(i)

around the divisor Di defined by wi = ∑
µ
j=1 aijrj = 0 (c.f. (4.7)). Since

N(i) is determined by the Picard–Lefschetz formula (Lemma 4.14), we see
that the period map φ is completely determined by the relation matrix A
of the extremal curves Ci’s. (The period map gives the desired VHS, with
degenerations, over Z×.) This completes the proof that refined B model on
Y\Z = U determines the B model on X.

Remark 6.3. Bryant and Griffiths reformulate the VHS for Calabi–Yau three-
folds in terms of Legendre subvarieties in P(H3(X)) It might be possible to
show that F̃• over Z1 uniquely determines a Legendre subvariety inside
P(H3(X)) which coincides with MX̄.
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7. REMARKS ON THE BASIC EXACT SEQUENCE

For a conifold transition of Calabi–Yau 3-folds X ր Y, we have shown
that the combined information of A model and B model of X determines
the corresponding information on Y, and vice versa. However, the effective
computational method for such a determination has not been addressed
much besides the vanishing/extremal invariants.

In this final section of the paper we make two remarks concerning the
quantum aspects of the basic exact sequence. The aim is to shed some
light on the possible directions to achieve such an effective computational
method, especially on the implication A(X) + B(X) ⇒ A(Y).

7.1. Local transitions between A(Y) and B(X). The basic exact sequence
in Theorem 2.9 provides a Hodge theoretic realization of the numerical
identity µ + ρ = k. Now H2(Y)/H2(X) ⊗ C ∼= Cρ is naturally the pa-
rameter space of the extremal Gromov–Witten invariants of the Kähler de-
generation ψ : Y → X̄, and V∗⊗C ∼= Cµ is naturally the parameter space of
periods of vanishing cycles of the complex degeneration from X to X̄. Both
of them are equipped with flat connections induced from the Dubrovin
(resp. Gauss–Manin) connection over their tangent bundles. Thus it is nat-
ural to ask if there is a D module lift of the basic exact sequence.

We rewrite the basic exact sequence in the form

Ck

H2
C(Y)/H2

C(X) ∼= Cρ

B

77♦♦♦♦♦♦♦♦♦♦♦♦♦
V∗

C
∼= Cµ

A

cc❍❍❍❍❍❍❍❍❍❍

with AtB = 0. This simply means that Ck is an orthogonal direct sum of the
two subspaces im(A) and im(B). Let A = [A1, · · · , Aµ], B = [B1, · · · , Bρ],
and consider the invertible matrix

S = (si
j) := [A, B] ∈ Mk×k(Z),

namely si
j = aij for 1 ≤ j ≤ µ and si

µ+j = bij for 1 ≤ j ≤ ρ.

Denote the standard basis of Ck by e1, · · · , ek with coordinates y1, · · · , yk.

Let e1, · · · , ek be the dual basis on (Ck)∨. We consider the standard (trivial)

logarithmic connection on the bundle Ck ⊕ (Ck)∨ over Ck defined by

(7.1) ∇ = d +
1

z

k

∑
i=1

dyi

yi
⊗ (ei ⊗ e∗i ),

where z is a parameter. It is a direct sum of k copies of its one dimensional
version. We will show that the principal (logarithmic) part of the Dubrovin
connection over Cρ (c.f. (3.8)) as well as the Gauss–Manin connection on
Cµ (c.f. (4.11)) are all induced from this standard logarithmic connection
through the embeddings defined by B and A respectively.
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Recall the basis T1, · · · , Tρ of Cρ with coordinates u1, · · · , uρ, and the

frame T1, · · · , Tρ, T1, · · · , Tρ on the bundle Cρ ⊕ (Cρ)∨ over Cρ. Notice that

Tj corresponds to the column vector Bj = Sµ+j, 1 ≤ j ≤ ρ. Let T̂j corre-

spond to the column vector Aj = Sj for 1 ≤ j ≤ µ with dual T̂ j’s. Then

Tj =
k

∑
i=1

bij ei =
k

∑
i=1

si
µ+j ei,

and dually

(7.2) ei =
µ

∑
j=1

si
j T̂ j +

ρ

∑
j=1

si
µ+j T j =

µ

∑
j=1

aij T̂ j +
ρ

∑
j=1

bij T j.

Denote by P the orthogonal projection

P : Ck ⊕ (Ck)∨ → Cρ ⊕ (Cρ)∨.

Using (7.1) and (7.2), we compute the induced connection ∇P near~0 ∈ Cρ:

∇P
Tl

Tm =
k

∑
i, i′=1

bilbi′m
(

∇ei
ei′
)P

=
1

z

k

∑
i=1

bilbim

yi
(ei)P =

1

z

ρ

∑
n=1

k

∑
i=1

bilbimbin

yi
Tn.

(7.3)

We compare it with the one obtained in (3.8), (3.9) and (3.11):

∇z
Tl

Tm = −1

z

ρ

∑
n=1

(

(Tl .Tm.Tn) +
k

∑
i=1

bilbimbin
qi

1 − qi

)

Tn,

where qi = exp ∑
ρ
p=1 bipup = exp vi. Thus the principal part near ui = 0,

1 ≤ i ≤ ρ, gives

1

z

ρ

∑
n=1

k

∑
i=1

bilbimbin

vi
Tn,

which coincides with (7.3) by setting vi = yi for 1 ≤ i ≤ ρ. We summarize
the discussion in the following proposition:

Proposition 7.1. Let X ր Y be a projective conifold transition through X̄ with k

ordinary double points. Let the bundle Ck ⊕ (Ck)∨ over Ck be equipped with the
standard logarithmic connection defined in (7.1). Then

(1) The connection induced from the embedding B : Cρ → Ck defined by
the relation matrix of vanishing 3 spheres for the degeneration from X
to X̄ gives rise to the logarithmic part of the Dubrovin connection on
H2(Y)/H2(X).

(2) The connection induced from the embedding A : Cµ → Ck defined by
the relation matrix of extremal rational curves for the small contraction
Y → X̄ gives rise to the logarithmic part of the Gauss–Manin connection
on V∗, where V is the space of vanishing 3-cycles.
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Part (1) has just been proved. The proof for (2) is similar (by setting

z = 2π
√
−1 and wi = yi, c.f. (4.11)) and is omitted. We remark that the two

subspaces B(Cρ) and A(Cµ) are indeed defined over Q and orthogonal to
each other, hence A and B determine each other up to choices of basis.

7.2. Speculation for globalization. Our proof for A(X) + B(X) ⇒ A(Y)
in Section 5.3 is not constructive. Here we discuss briefly an idea developed
in a forthcoming work to attack the problem for genus zero theory [18].

We have seen that the Dubrovin connection on H2(Y)/H2(X) is deter-
mined by the relation matrix B of vanishing spheres. Consider the diagram

H2(Y)/H2(X) H2(Y)oo

H2(X),

OO

and regard it as the cohomology realization of the small contraction

⋃k
i=1 Ci

// Y

ψ̄
��

X̄.

Since X̄ is singular and not an orbifold, the Gromov–Witten theory on X̄
is so far undefined in the literature. Nevertheless, in the current situa-
tion, according to the principle of deformation invariance we may treat
it as GW(X), which is given. Now the picture looks very similar to the
quantum Leray–Hirsch theorem for projective (or toric) bundles proved in
[17] despite the fact that ψ̄ is a birational contraction/crepant blowup in-
stead of a bundle morphism. However, in the cohomology level it looks
just like a bundle. Thus it is reasonable to believe that the idea of quantum
Leray–Hirsch principle can also be applied to such a situation.

To see how the B model of X enters the picture, we mention only the
observation that ψ̄ : Y → X̄ can be realized as the blow-up along certain
Weil divisors in X̄, and those Weil divisors can in fact be constructed from
the relation matrix B of the k vanishing spheres Si’s.
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