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ABSTRACT. Let X be a projective minimal Gorenstein 3-fold of
general type with canonical singularities. We prove that the 5-
canonical map is birational onto its image.

1. Introduction

One main goal of algebraic geometry is to classify algebraic varieties.
The successful 3-dimensional MMP (see [16, 19] for example) has been
attracting more and more mathematicians to the study of algebraic
3-folds. In this paper, we restrict our interest to projective minimal
Gorenstein 3-folds X of general type where there still remain many
open problems.

Denote by Kx the canonical divisor and ®,, := @),k the m-
canonical map. There have been a lot of works along the line of the
canonical classification. For instance, when X is a smooth 3-fold of
general type with pluri-genus h°(X,kKx) > 2, in [17], as an applica-
tion to his research on higher direct images of dualizing sheaves, Kollar
proved that ®,,, with m = 11k + 5, is birational onto its image. This
result was improved by the second author [5] to include the cases m
with m > 5k + 6; see also [7], [9] for results when some additional
restrictions (like bigger p, (X)) were imposed.

On the other hand, for 3-folds X of general type with ¢(X) > 0,
Kollar [17] first proved that ®q95 is birational. Recently, the first author
and Hacon [4] proved that ®,, is birational for m > 7 by using the
Fourier-Mukai transform. Moreover, Luo [22], [23] has some results for
3-folds of general type with h?(Ox) > 0.

Now for minimal and smooth projective 3-folds, it has been estab-
lished that ®,, (m > 6) is a birational morphism onto its image after
20 years of research, by Wilson [29] in the year 1980, Benveniste [2]
in the year 1986 (m > 8), Matsuki [24] in the year 1986 (m = 7), the
second author [6] in the year 1998 (m = 6) and independently by Lee
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20], [21] in the years 1999-2000 (m = 6; and also the base point free-
ness of m-canonical system for m > 4). A very natural and well-known
question arises:

Question 1.1. Let X be a minimal Gorenstein 3-fold of general type.
Is &5 birational onto its images?

Despite many attempts officially or privately announced, it seems
that the birationality of ®5 for 3-folds (even with the stronger assump-
tion that Kx is ample) remains beyond reach. The difficulty lies in
the case with smaller p,(X) or K%. One reason to account for this is
that the non-birationality of the 4-canonical system for surfaces may
happen when they have smaller p, or K? (see Bombieri [3]), whence a
naive induction on the dimension would predict the non-birationality
of the 5-canonical system on certain 3-folds with smaller invariants.

Nevertheless, there is also evidence supporting the birationality of
&5 for Gorenstein minimal 3-folds X of general type. For instance,
one sees that K% > 2 for minimal and smooth X (see 2.1 below).
So an analogy of Fujita’s conjecture would predict that |5K x| gives a
birational map. We recall that Fujita’s conjecture (the freeness part)
has been proved by Fujita, Ein-Lazarsfeld [10] and Kawamta [14] when
dim X < 4.

The aim of this paper is to answer Question 1.1 which has been
around for many years:

Theorem 1.2. Let X be a projective minimal Gorenstein 3-fold of
general type with canonical singularities. Then the m-canonical map
®,, is a birational morphism onto its image for all m > 5.

Example 1.3. The numerical bound ”5” in Theorem 1.2 is optimal.
There are plenty of supporting examples. For instance, let f : V — B
be any fibration where V' is a smooth projective 3-fold of general type
and B a smooth curve. Assume that a general fiber of f has the
minimal model S with K% = 1 and p,(S) = 2. (For example, take the
product.) Then @4k, | is apparently not birational (see [3]).

1.4. Reduction to birationality. According to [6] or [20], to prove
Theorem 1.2, we only need to verify the statement in the case m = 5.
On the other hand, the results in [20, 21] show that |mKx| is base
point free for m > 4. So it is sufficient for us to verify the birationality
of [5Kx]| in this paper.

1.5. Reduction to factorial models. According to the work of M.
Reid [26] and Y. Kawamata [15] (Lemma 5.1), there is a minimal model
Y with a birational morphism v : Y — X such that Ky = v*(Ky)
and that Y is factorial with at worst terminal singularities. Thus it is
sufficient for us to prove Theorem 1.2 for minimal factorial models.
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2. Notation, Formulae and Set up

We work over the complex number field C. By a minimal variety
X, we mean one with nef Ky and with terminal singularities (except
when we specify the singularity type).

2.1. Let X be a projective minimal Gorenstein 3-fold of general type.
Taking a special resolution v : Y — X according to Reid ([26]) such
that c2(Y)-A = 0 (see Lemma 8.3 of [25]) for any exceptional divisor A
of v. Write Ky = v*Kx + F where E is exceptional and is mapped to
a finite number of points. Then for m > 2, we have (by the vanishing
in [13], [28] or [11]):

1 1

X(Ox) = x(Oy) = —ﬂKy (YY) = —ﬂV*KX (Y.

Pn(X) = x(Ox(mKx)) = x(Oy(mv*Kx))

Smm = 1)(@m — D+ 0 K- ex(Y) 4 x(O)
= (2m-— 1)(777’(”;—2_1)K§’< —X(Ox)).

The inequality of Miyaoka and Yau ([25], [30]) says that 3co(Y) — K3
is pseudo-effective. This gives v* Ky - (3c2(Y) — K2) > 0. Noting that
v*Kx - E? = 0 under this situation, we get:

~72x(0x) — K% > 0.
In particular, x(Ox) < 0. So one has:
4(X) = B(Ox) + (1 — py(X)) = X(Ox) > 0
whenever p,(X) < 1.

2.2. Suppose that D is any divisor on a smooth 3-fold V. The Riemann-
Roch theorem gives:

D3 KV 'D2 D (K‘Q/—f—CQ)

xX(Ov(D)) = o 1 + 19 + x(Ov).
Direct calculation shows that
—Ky - D?
X(Ov(D)) + x(Oy(—D)) = —5 7t 2x(Oy) € Z.

Therefore, Ky - D? is an even number.

Now let X be a projective minimal Gorenstein 3-fold of general type.
Let D be any divisor on X. Then Ky - D?* = Ky - (v*D)? is even.
Especially K% is even and positive.
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2.3. Let V be a smooth projective 3-fold and let f : V — B be a
fibration onto a nonsingular curve B. From the spectral sequence:

EY? = H?(B,Rf.wy) = E" := H"(V,wy),

one has the following by Serre duality and Corollary 3.2 and Proposition
7.6 on pages 186 and 36 of [17]:

R*(Oy) = h*(B, f.wy) + h°(B, R' f.wy),
q(V) := h'(Oy) = g(B) + h'(B, R' f.wy).
2.4. For p=1,2, we set

d — Dy if pg(X) > 2,
@9 y| otherwise.

Since we always have P»(X) > 4, ® is a non-trivial rational map.

Let 7 : X’ — X be the a resolution of the base locus of ®. We
write |7*(uKx)| = |M'| + E'. Then we may assume:

(1) X’ is smooth;

(2) the movable part of |uK x| is |M’|, which is base point free;

(3) E’ is a normal crossing divisor ( hence so is a general member in
7 () ).

We will fix some notation below. The frequently used ones are M,
Z, S, A and E,. Denote by g the composition ® o 7. So g : X' —
W' C PV is a morphism. Let g : X’ . W —. W’ be the Stein
factorization of g such that W is normal and f has connected fibers.
We can write:

K| = 7" (nKx)| + pbr = |M'| + Z',

where Z' is the fixed part and E, an effective m-exceptional divisors.

On X, one may write uKy ~ M+ 7 where M is a general member of
the movable part and Z the fixed divisor. Let S € |M’| be the divisor
corresponding to M, then

(M) =S+ A =5+ dE;

i=1

with d; > 0 for all 7. The above sum runs over all those exceptional
divisors of 7 that lie over the base locus of M. Obviously £/ = A +
7*(Z). On the other hand, one may write E, = 22:1 e; I where the
sum runs over all exceptional divisors of . One has e; > 0 for all
1 < j <t because X is terminal. Apparently, one has t > s.

Note that Sing(X) is a finite set (see [19], Corollary 5.18). We may
write B, = A"+ A" where A’ (resp. A”) lies (resp. does not lie) over
the base locus of |M|. So if one only requires such a modification 7

that satisfies 2.4(1) and 2.4(2), one surely has supp(A) = supp(A’).
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Let d := dim ®(X). And let L := 7*(Kx)|s, which is clearly nef and
big. Then we have the following:

Lemma 2.5. When d > 2, (L?)? > (7*Kx)3(n*(Kx) - S?). Morover,
L?>2.

Proof. Take a sufficiently large number m such that |mn*(Kx)| is base
point free. Denote by H a general member of this linear system. Then
H must be a smooth projective surface. On H, we have nef divisors
m(Kx)g and S)y. Applying the Hodge index theorem, one has

(7 (Kx)a - Sip)* = (7" (Kx)11)*(Sim)*

Removing m, we get the first inequality. By 2.2, (7* Kx)? is even, hence
> 2. Together with 7*(Ky)-S? > 0, we have the second inequality. [

We now state a lemma which will be needed in our proof. The result
might be true for all 3-folds with rational singularities.

Lemma 2.6. Let X be a normal projective 3-fold with only canonical
singularities. Let M be a Cartier divisor on X. Assume that |M| is
a movable pencil and that |M| has base points. Then |M| is composed
with a rational pencil.

Proof. Take a birational morphism 7 : X’ — X such that X’ is
smooth, that the exceptional divisor E is of simple normal crossing,
and that the map @5, composed with 7, becomes a morphism from
X' to a curve. Take a Stein factorization of the latter morphism to get
an induced fibration f : X’ — B onto a smooth curve B. The lemma
asserts that B must be rational.

Clearly, the exceptional divisor E,; dominates B.

Case 1. Bs|M| contains a curve I

This is the easier case. Note that X has only finitely many points at
which Kx is non-Cartier or X is non-cDV (see Cor. 5.40 of [19]). So
we can pick up a very ample divisor H on X (avoiding these finitely
many points) such that H is Du Val and intersects I" transversally. We
may assume that the strict transform H’ on X’ is smooth, i.e., 7 is
an embedded resolution of H C X. Clearly, there is an m-exceptional
irreducible divisor £ which dominates both I" and B. Now for a general
H, both H and ENH’ dominate B. Since the curve ENH' arises from
the resolution 7 : H' — H of the indeterminancy of the linear system
| M|z (whose image on X is contained in I' N H), it is rational. So B
is rational.

Case 2. Bs|M]| is a finite set. (The argument below works even
when X is log terminal.)

Take a base point P of |M|. Then F = 7 !(P) dominates B, i.e.,
f(F) = B. By Kollar’s Theorem 7.6 in [18], there is an analytic con-
tractible neighborhood V' of P such that U = #~(V) C X’ is simply
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connected. Suppose ¢g(B) > 0. Then the universal cover h: W — B
of B is either the affine line C or an open disk in C. By Proposition
13.5 of [12], there is a factorization for the restriction f|y : U — B,
say f = hom, where m : U — W is continuous. Note that m(E) is
a compact subset of W, so m(E) is a single point. In particular, f(E)
is a point, a contradiction. O

3. The case p, > 2
The following proposition is quite useful throughout the paper.

Proposition 3.1. Let S be a smooth projective surface. Let C be
a smooth curve on S, N' < N be divisors on S and A C |N| be a
subsystem. Suppose that |N'|jc = |N'|c|, deg(Nic) = 1 + deg(N'jc) >
1+ 2¢(C). We consider the following diagram

Tes

IN'| — [N

lJreff J{+P1

|N| res |N|C|

e e
A res AC
Suppose furthermore that Ajc is free and Nc D |N'|jc + Pi. Then
Aic = |Nlic = |N¢l, (*)
which is very ample and complete.

Proof. By the Riemann-Roch theorem and Serre duality, we have dim
|Ni¢| = 14 dim |[N’|¢|. Since there are inclusions |[N'|jc + Py € Aje C
|Nl|ic € |Nj¢|, now the equalities (*) in the statement follow from the
dimension counting and the fact that the first inclusion above is strict
by the freeness of Ajc. O

Theorem 3.2. Let X be a projective minimal factorial 3-fold of general
type. Assume py(X) > 2. Then @5 is birational.

Proof. We distinguish cases according to d := dim ®(X).

Case 1: d = 3. Then py(X) > 4. @5 is birational, thanks to
Theorem 3.1(i) in [9)].

Case 2: d = 2. We consider the linear system |Kx: +37*(Kx )+ S)|.
Since Kx/ + 37" (Kx)+ S > S and according to Tankeev’s principle, it
is sufficient to verify the birationality of (I)\Kxf+3ﬂ*(Kx)+SMs' Note that
we have a fibration f : X’ — W where a general fiber of f is a smooth
curve C' of genus > 2. The vanishing theorem gives:

’KX’ —|—37T*(Kx) —|—S"S = ‘K5—|—3L’
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where L := 7*(Kx)s is a nef and big divisor on S.
By Lemma 2.5, L* > 2. According to Reider ([27]), ®|xyssr| is
birational and so is ®5.

Case 3: d =1. We set b := g(B). When b > 0, let’s consider the
system |M| on X. If |M| has base point, then by 2.6, b = 0, which is
a contradiction. Thus we may assume that |M| is free. Then in this
situation, ®5 is birational, which is exactly the statement of Theorem
3.3 in [9]. For reader’s convenience, we sketch the proof here.

From now on, we suppose b = 0. Let F' be a general fiber of f and
denote by o : ' — F{ the contraction onto the minimal model. We
take m to be the composition 71 o my where g satisfies 2.4(1) and 2.4(2)
and 7 is a further modification such that 7*(Kx) is supported on a
normal crossing divisor.

We may write S ~ aF where a > py(X) — 1. And we set L :=
m*(Kx)|p instead. From the relation

|KX/ +37T*(Kx) +S||F = |KF+3L’,

we see that the problem is reduced to the birationality of |Kp + 3L|
because |Kx+37*(Kx)+S| D |S| apparently separates different fibers
of f. Let F := m,(F). We know that Ky - F? is an even number by
2.2.

If Kx - F? >0, then we have

L*=1"(Kx)? F=K%-F>Kyx F?>2.

Reider’s theorem says that |Kp + 3L| gives a birational map.
We are left with only the case Ky - F'? = 0. First we have:

Claim 3.3. [f KX : FQ = 0, then OF<7T*(Kx)‘F) = OF(O'*KFO)-

Proof. Tt is obvious that the claim is true if it holds for 7 = my. So we
may assume ™ = my. Now

0= KX : (CLF)2 = KX 'M2 :W*(Kx) 7T*<M) .S = aﬂ'*(KX>|F'A|F,

which means 7*(Kx)|r - A\ = 0. On the other hand, the definition
of my gives A”|F = 0. Thus (E)r -7 (Kx)r = 0.
We may write
KF = W*(Kx)‘p + G

where G = (E;)|p is an effective and contractible (so negative definite)
divisor on F. Note that L is nef and big and that L - G = 0. The
uniqueness of the Zariski decomposition shows that o* Kp, ~ 7*(Kx)p.
We are done.

From the above claim, we have @ g, 31 = Puk,. We are left to
verify the birationality of ®5 only when ®4x,| fails to be birational,
i.e. when K7 =1 and py(F) = 2.

Meng, can you do this?
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The Kawamata-Viehweg vanishing theorem ([11, 13, 28]) gives
[Kxr +3n"(Kx) + Flir = [Kr 4 30" (KR,)|. (1)

Denote by C' a general member of the movable part of |0* Kp,|. By [1],
we know that C' is a smooth curve of genus 2 and o(C) is a general
member of |Kg |. Applying the vanishing theorem again, we have

|Kp + 20" (KR,) + Clic = [Kc + 20" (KR, cl- (2)

Now we may apply Proposition 3.1. Let N’ := Kg 4+ 20*(Kpg,) + C
and N := (57" Kx)p. Set A = |57*(Kx)|p. It's clear that N' < N.
Also note that A is free for |[5K x| is free.

By (1) above, we see that A D |N'|+ (a fixed effective divisor).

Now restrict to C', computation shows that deg(N'|c) = 4 and 5 =
deg(Nic) = 1 + deg(N'|c). Therefore, the induced inclusion |N'|¢| —
|Nc| is given by adding a single point P;.

By (2), we have |N'|¢| = |N'||c. Together with (1), we have Ajc D
|N'|c|+ Py. Hence by Proposition 3.1, Ajc = |N|¢| gives an embedding.
Because |57*Kx|jr D |N'| D |C| (by (1) above) separates different C'
(noting that py(F') = 2 and |C| is a rational pencil), ®5p is birational.
It is clear that [57*K x| D |S| separates different fibres F.. Thus ®5 is
birational. 0

4. Birationality via bicanonical systems

In this section, we shall complete the proof of Theorem 1.2 by study-
ing the bicanonical system. We set ® := ®, as stated in 2.4. Denote
dy := dim ®5(X). We organize our proof according to the value of d,.

Theorem 4.1. Let X be a projective minimal factorial 3-fold of general
type. Assume dy = 3. Then 5 is birational.

Proof. Recall that K% is even by 2.2, so it’s either > 2 or = 2.

Case 1. The case K% > 2.

Pick up a general member S. Let R := S|s. Then |R| is not composed
of a pencil. Thus one obviously has R? > 2. So the Hodge index
theorem on S yields

W*(Kx) . 52 = W*(KX)LS' - R 2 2.

Set L := n*(Kx)s. If K% > 2, then Lemma 2.5 gives L? > 2.

In this case, we must emphasize that we only need such a modifi-
cation 7 that satisfies 2.4(1) and 2.4(2). Namely, we don’t need the
normal crossings. Thus we have Supp(A) = Supp(A’). This property
is crucial to our proof.

Now the vanishing theorem gives

|Kxo + 27" (Kx) + |5 = | Ks + 2L

Because (2L)% > 12, we may apply Reider’s theorem again. Assume
that @ gg40r) is not birational. Then there is a free pencil C' on S
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such that L - C = 1. Note that R < 2L, and that |R| is base point
free and |R| is not composed of a pencil. Thus dim(®g(C)) = 1.
Because C' lies in an algebraic family and S is of general type, we have
g(C) > 2. Since h°(C, Rj¢) > 2, the Riemann-Roch theorem on C
and Clifford’s theorem on C, it easily implies that R - C' > 2. Because
R-C <2L-C =2, one must have R - C = 2. Since

2L = S‘S + A|S —f—ﬂ'*(Z)‘g

and C' is nef, we have Ag-C' = 0. This implies that A’|S -C'=0. Note
also that A" g = 0 for general S. We get (Er)js - C' = 0. Therefore

Ksc:(KX/—l—S)|SC:7T*(Kx)|SC+(Eﬂ)|50+5|50:3,

an odd number. This is impossible because C'is a free pencil on S. So
®5 must be birational.

Case 2. The case K% = 2.

If L? > 3, then ¢5 is birational according to the proof in Case 1.
So we may assume L? = 2. By Lemma 2.5, we have 7*(Ky) - S? = 2.
Set C' = S|s. Then |C| is base point free and is not composed with a
pencil. So C? > 2. The Hodge index theorem also gives

4= (m"(Kx)s-C)*>L*-C* > 4.

The only possibility is L? = C? = 2 and L = C. On the other hand,
the equality

4=2Ky =K% (M+2)=L*+K%-Z=2+K%-Z

gives K% - Z = 2. Take a very big m such that |mKx| is base point
free and take a general member H € |mKx|. By the Hodge index
theorem, 4 = 5 (Kyx - M - H)? > (K% - H)(M? - H) = 2Kx - M*.
Thus Kx - M? =2 and (Kx)jg = M|y. Multiplying it by 2, we deduce
So L -7*(Z)s = 2. Since 2C = 2L = 1*(2Kx)|s = m*(M + 2Z)s =
(S+A+7(2)s =C+(A+7*(2))s and L? = L-C = 2, we see
that
0=L-A=C-A. (3

Thus KS = (KX/ +S)|s =(C+ (W*(Kx) +E7r)|5 = (C+L)+ ((EW)“;)
P+ N is the Zariski decomposition by (3) and 2.4. Denote by o : S —
So the contraction onto the minimal model. Then C' + L ~ o*(K,).

Note that C' = Sis and dim |C| > dim |S||s > 2 because |S| gives a
generically finite map. Assume to the contrary that ®5 is not birational.
Then neither is ®|g. Denote by d the generic degree of ®5. Then:

2=0C%=8%>d(P(X)-3).

Because d > 2, we see P»(X) = 4 and d = 2. As we have shown in
Step 1 that

|5K x/||s D the movable part of [Kg+ 2L| D |C],

~—
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we see that ¢ : § — P""(S0)=1 ig not birational. On the other hand,
we may write
2 = C? > deg(Pc)) deg(Pic((9)).

If h°(S,C) > 4, then deg(®iy(S)) > 2 and deg®|c| = 1, ie. Pig
is birational which contradicts the assumption. So h°(S,C) = 3 and
|C| = |S]js. Therefore ®¢ : S — P? is generically finite of degree 2.
Let ®|¢| = 7o be the Stein factorization with v : S — S’ a birational
morphism onto a normal surface and 7 : S’ — P? a finite morphism of
degree 2. We can write C' = <I)‘*C|€ with a line /.

For a curve E on S, by the projection formula, C.E = £.® ¢, E. So
E' is contracted to a point on S’ if and only if E is contracted to a point
on P? (for 7 is finite); if and only if E is perpendicular to C' = $0*(Kg,)
(= half of the pull back of Kg which is ample on the unique canonical
model S of S); if and only if F is contracted to a point on S by the
projection formula again; we denote by FE,; the union of these E. By
Zariski Main Theorem, both S\ E,; — S\ (the image of E,;) and
S\ Ea; — S’\ (the image of E,;) are isomorphisms (so we identify
them). Both S and S’ are completion of the same S\ E,; by adding
a finite set. The normality of S and S’ implies that the birational
morphisms S — S and S — S’ can be identified, so also S’ = S.

Since S is normal, Propositions 5.4, 5.5 and 5.7 of [19] imply a split-
ting

T*Og = OPQ b L
where L is a line bundle. Thus we see that
a(S) = 4(5) = 1'(5,7.05) .
Since S is nef and big on X', the long exact sequence
0=HY(Kx +8) — HY(Ks) — H*(Kx/) — H*(Kx +S) =0

gives ¢(X) = ¢(X’) = ¢(S) = 0. Noting that x(Ox) < 0, we naturally
have py(X) > 2. By Theorem 3.2, ®5 is birational, a contradiction.
Therefore we have proved the birationality of ®s. O

Theorem 4.2. Let X be a projective minimal factorial 3-fold of general
type. Assume dy = 2. Then 5 is birational.

Proof. Case 1. K% > 2.

When dy =2, f : X’ — W is a fibration onto a surface W. Taking a
further modification, we may even get a smooth base WW. Denote by C'
a general fiber of f. Then g(C') > 2. Pick up a general member S which
is an irreducible surface of general type. We may write Sig ~ > 72, C;
where ay > Py(X) — 2. Since K% > 2, we have ay > Pp(X) —2 > 3.
Set L := 7*(Kx)s. Then L is nef and big. Since 7*(Ky) - S* =
(W*(Kx)|5 . S|S)S > S(W*(KX)‘S . C)S > 3, Lemma 2.5 giVGS L2 > 4.
The vanishing theorem gives

|Kxr + 21" (Kx) 4+ S|js = |Kg + 2L|. (4)
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Assume that ®5 is not birational. Then neither is @ x40r) for a
general S. Because (2L)* > 10, Reider’s theorem ([27]) tells us that
there is a free pencil C’ on S such that L -C’' = 1. Since 2 = C"-2L >
C'.Sg = axC" - C > 3C".C, we have C'- C" = 0. So €’ lies in the same
algebraic family as that of C. We may write

2LECL20+G

where G = (A + 7*(Z));s = 0 and ap > 3. Since 2L — C — éG =
(2 — a—22)L is nef and big, Kawamata-Viehweg vanishing theorem gives
HY (S, Kg+ [2L —C — G,_IQGD = 0. Thus we get a surjection:

1
H°(S, Kg + [2L — a-G}) — H°(C, K¢ + D)
2

where D := [2L — ;—QGMC with deg(D) > (2 — %)L - C > 1. Note
that |Kg+ 2L| can separate different C. If deg(D) > 3, then |K¢c + D)|
defines an embedding, and so does |Kg + 2L|, a contradiction.

So suppose deg(D) = 2. We now apply Proposition 3.1. Let N’ be
the movable part of Kg + [2L — a—lzG-| and let N = 7*(5Kx)|s. Set
A= |57*(Kx)l||s. As in the proof of Theorem 3.2, we have A O |N'|+
(a fixed effective divisor), |[N'||c = |[K¢ + D|, N' < N and deg(N|c) =
1+ deg(N/¢) = 29(C) +1 =5 by the calculation:

1< (29(C)=2)+2=N-C<N-C=5r"Kyx-C=5.

By Proposition 3.1, Ajc = |N¢| gives an embedding. It is clear that
5m*Kx| D |S| separates different S, and [57*Kx|s(D the movable
part of |Kg + 2L|) separates different C. Thus ®5 is birational. This
is again a contradiction.

Case 2. K3 =2.
We first consider the case L? > 3. On the surface S, we are reduced
to study the linear system |Kg + 2L|. We have

az
2L~ Ss+G =Y Ci+G

i=1
where ay > h%(S, Sjs)—1 > P»(X)—2 > 2. Denote by C' a general fiber
of f: X' — W. If ag > 3, the proof in Case 1 already works. So we
assume ap = 2, then P(X) = 4, and the image of the fibration ® s :
S — P? is a quadric curve which is a rational curve. This means that
|C'| is composed with a rational pencil. Assume that |Kg + 2L| does
not give a birational map. Then Reider’s theorem says that there is
a free pencil ¢’ on S such that L - C’" = 1. We claim that C’ is the
same pencil as C. In fact, otherwise C” is horizontal with respect to
C and C - C'" > 0. Since C' is a rational pencil, C' - C" > 2. Therefore
L-C" > 2, a contradiction. So C” lies in the same family as that of C'
and L - C = 1. Note that K¢ + 2L = (Kx + 21*(Kx));s + Sis > C.
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So |Kg + 2L| distinguishes different elements in |C|. The vanishing
theorem gives

HO(S, K¢+ [2L — %G}) — H°(C, K¢ + Q)

where @ = [2L — C' — 1G] ¢ is an effective divisor on C. If |[K¢ + Q)
is not birational, neither is |K¢|. So C' must be a hyper-elliptic curve.
Suppose ®5 is not birational. Then ®5 must be a morphism of generic
degree 2. Set s = ®5: X — W5 C PV. Then 5K x = s*(H) for a very
ample divisor H on the image W5. So

5=5m"(Kx)-C = 2deg(H|sx(c)) = 2degpn s(m(C))

which is a contradiction. Thus ®5 must be birational under this situa-
tion.

Next we consider the case L? = 2. Lemma 2.5 says 2 = 7*(Kx)-S% =
asL - C. We see that ap = 2 and L -C = 1. We still consider the
linear system |Kg+2L|. As above, ay = 2 implies that |C| is a rational
pencil. Since Kg+2L > C, we see that |Kg+2L| distinguishes different
elements in |C|. By the same argument as above, we have

|Ks+2Ljic D |Ke + Q| D |Kcl.

If @5 is not birational, then neither is ®|g,yor. This means that C
must be a hyper-elliptic curve and ®5 is of generic degree 2. With the
property that |5K x| is base point free, we also have a contradiction as
in the previous case. So ®5 is birational. U

Theorem 4.3. Let X be a projective minimal factorial 3-fold of general
type. Assume do = 1. Then @5 is birational.

Proof. When X is smooth, this theorem was established in [7]. Our
result is a generalization.

Taking the modification 7 as in 2.4, we get an induced fibration
f: X' — W and B := W is a smooth curve of genus b := g(B). By
Lemma 2.1 of [8], we know that 0 < b < 1. Let F' be a general fiber of

f.
Claim 4.4. We have
Or(m*(Kx)ir) = Or(0"(Kg,))
where o : F' — Fy 1s the contraction onto the minimal model.

Proof. 1t b > 0, then the movable part of |2K x| is already base point
free by Lemma 2.6. The claim is automatically true.
Suppose b = 0. Set F':= m,F. We may write (see 2.4):

=1
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where ay > Po(X) — 1 > 3 and F; is a smooth fiber of f for each i.
Then 2K x = asF' + Z. Assume Kx - F? > 0. Then we have

2K% > ayK%-F >ad
1
> (PX) = 1)* = (K% = 6x(Ox) - 2)°
1
> Z(K§(+4>2'

The above inequality is absurd. Thus Ky -F? = 0 and 7*(Kx )|p- O r =
0. Now we apply the same argument as in the proof of Claim 3.3. Thus
the claim is true. U

Considering the linear system |Kx/ + 27*(Kx) + S| D |S|, which
apparently separates different fibers of f, we get a surjection by the
vanishing theorem:

‘KX’ —|—27T*(Kx) _'_SMF = |KF—|—2O'*(KFO)‘

Since I' is a surface of general type, @3k, is birational except when
(K%,,pg(F)) = (1,2), or (2,3). Thus ®; is birational except when F is
of those two types.

From now on, we assume that F' is one of the above two types.
Then ¢(F') = 0 according to surface theory. By 2.3, one has ¢(X) = b
because R f.wx = 0. Since we may assume p,(X) < 1 by Theorem 3.2,
X(Ox) < 0 and b < 1, we see that the only possibility is ¢(X) = b =1,
py(X) =1 and h?(Ox) = 0.

Let D € |1*(Kx)| be the unique effective divisor. Since 2D ~
2m*(Kx ), there is a hyperplane section HY of W’ in P2(¥)=1 such that
g*(HY) = ayF and 2D = ¢g*(HY) + Z'. Set Z' := Z, + 27y, where Z,, is
the vertical part with respect to the fibration f and 27, the horizontal
part. Thus

D= (g (H)) + 2.) + 7.
Noting that D is a integral divisor, for a general fiber F, (Z),)r =
D|F ~ 0'*<KFO).
Considering the Q-divisor
1 2

Ky + 47r*(KX) —F—-—Z,— —Zp,
a2 a2
set
. 1 2
G :=3m (KX)+D— — Ly — — 2,
(05} (05}
and

2
Dy = [G]| =31"(Kx) + [(1 = —)Zp,] + vertical divisors.
a2

For a general fiber F, G—F = (4— %)W*(Kx) is nef and big. Therefore,
by the vanishing theorem, H' (X', Kx/ + Dy — F) = 0.
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We then have a surjective map
2
H(X', Kx: + Do) — H(F, Kp + 30" (Kg,) + [(1 — a—)Z,J‘F).
2
. . 2 o
If F'is a surface with (K*,p,) = (2,3), then (I)IKF+30*(KFO)+((1—%)ZH\F\
is birational on F'. Otherwise, since
2 2 2
[( )Znlir > [(1— a_2)<Zh)IF] =[(1=—=)Dyrl,
Proposition 2.1 of [9] implies that Pkt 30 (B )+ [0 2) 2], 18 DiTA-
tional. Thus &5 is birational. l

Theorems 4.1, 4.2 and 4.3 imply Theorem 1.2.

1— = -
a9 a2
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