A + B Model in Quantum Geometry

Oct. 12, 2009

NTU Math

Dragon

GOAL: Toward a Quantum Minimal Model Program

We propose a QMMP (jointly with Y.P. Lee and H.W. Lin) in higher dimensional algebraic geometry.

- 1. In the orbifold category.
- 2. Allowing symplectic deformations.
- 3. Keeping track on the quantum "A + B" model.

A QMMP using only A model (= Gromov-Witten theory, or quantum cohomology QH(X)) was proposed by Yongbin Ruan in 1998. Difficulty: QH(X) is not functorial under $f: X \to X'$.

Classical MMP = Mori Program

In 1982, Mori proposed the MMP to classify algebraic varieties of $\dim > 2$ by considering the cone of curves NE(X) under \cap with K_X :

- (1) Let X be a smooth complex variety. If K_X is not nef, then there is an extremal rational curve C in X with $K_X \cdot C < 0$ and a morphism $f \colon X \to X'$ which contracts all curves C' with $[C'] \in R[C]$.
- (2) If dim X' < dim X then we are done. X is a Mori fiber space over X' with Fano fibers (in principle can be classified).

Otherwise f is birational. Let $Z \subset X$ be the exceptional loci.

- (2-1) (Divisorial contraction.) If $\dim Z = \dim X 1$, then X' has only terminal singularity and we may repeat (1) for the new X' (Kawamata, Kollár).
- (2-2) (Small contraction.) If dim $Z < \dim X 1$, then X' is too singular to repeat the program. We need to perform a flip $X \cdots > X^+$, which is a surgery from (Z, C) to (Z^+, C^+) to achieve $K \cdot C^+ > 0$ (sign reversed). Then we may repeat (1) for X^+ .

The termination of flips in dim 3 was proven by Shokurov in 1984.

The existence of flips in dim 3 was proven by Mori in 1988.

Thus the MMP produces X' with nef K, or a Mori fiber space.

Recently, the existence of flips was proven by BCHM (Birkar-Cascini-Hacon-McKernann 2007) in all dimensions. But the termination is still open in dim > 4. (Dim 4 is OK.)

Problems about the minimal models X' of X when dim > 2: (1) They are singular.

(2) They are not unique.

For (1), in dim 3 the singularities are cDV/ $\mu_{\rm r}$, which are classified by Mori. They can be deformed into cyclic quotients of C^3 .

For (2), biratinal minimal models are connected by <u>flops</u>. A flop f: $X \cdots > X'$ is a surgery on C with $K_X \cdot C = 0 = K_{X'} \cdot C'$.

This was proven by Kollár-Mori in 1992 in dim 3, and by Kawamata in all dimensions recently. But K-M's methods show that flops in dim 3 preserves the type of Sing(X), moreover the vector spaces H(X) and IH(X) are independent of the choices of minimal models.

DEFINITION: X and X' are K-EQUIALENT if there are birational morphisms $g: Y \to X$, $g': Y \to X'$ such that $g^*K_X = g'^*K_{X'}$ on Y.

In 1997, I proved (in my thesis) that K equivalent projective manifolds X and X' have the same Betti and Hodge numbers. Also birational minimal models are always K equivalent. However,

- (1) The canonical (iso-) correspondence T: $H(X) \rightarrow H(X')$ has not yet been found for a general K equivalence.
- (2) Even if T is found (e.g. for all known smooth flops), T does not preserve the topological ring structures (cup product).

K equivalence conjecture (W- 2000): Such T exists which induces Def(X) "=" Def(X') and QH(X) "=" QH(X') (quantum cohomology rings).

- (1) B-model: In dim 3, invariance of the VHS(X) (variations of Hodge structures) over the complex structure moduli was proven by Kollár-Mori since 3D flops can be performed in flat families.
- (2) A-model: In dim 3, invariance of QH(X) over the Kähler moduli space (up to analytic continuations) was first studied by Witten in 1992 and completed by Li-Ruan around 1998.

Messages from "Nature": String Theory

2D <u>Super-Symmetric Conformal</u> Field Theory predicts the space-time is 10 dim, with 6 extra dimensions in tiny scale. Any geometric model (X, g) of it must satisfy the <u>Vacuum Einstein equation Ric(g) = 0</u>. The SUSY requires also that <u>g is a Kähler metric</u>. That is, X is Ricci flat Kähler-Einstein, nowadays called <u>Calabi-Yau manifolds</u>.

THEOREM (YAU 1976): X is Calabi-Yau iff $K_X = -c_1(X) = 0$. Indeed, in each Kähler class $[\omega] \in H^{1,1}(X, R)$ there is a unique Ric flat g.

There are $> 10^6$ such X's with different topology which had been found! Each Calabi-Yau 3-fold (real dim = 6) associates "a string theory". However, there is "only one universe". So what's going wrong?

There are two Type II (heterotic) twisted string theories: They are topological quantum field theories (TQFT):

String moduli: g (metric) \Leftrightarrow (J, ω) (complex, symplectic).

- (1) II-A: J fixed, ω varies \Rightarrow Hilbert space $H_A(X) = \bigoplus H^p(X, \wedge^q T^*)$ = $H^*(X)$, quantum correlation = Gromov-Witten theory.
- (2) II-B: J varies, ω fixed \Rightarrow Hilbert space $H_B(X) = \bigoplus H^p(X, \wedge^q T)$, quantum correlation = Kodaira-Spencer theory.

Master Conjecture: Any Calabi-Yau X leads to isomorphic TQFT.

The notion of symmetries in the <u>full Calabi-Yau moduli</u>: All CY 3-folds should be connected to each other via

- (1) Crepant (flopping) contractions/resolutions.
- (2) Finite Weil-Petersson distance degeneration/smoothing of Calabi-Yau with at most canonical singularities.

These two generate (a) extremal transitions, (b) birational Calabi-Yau's and (c) mirror symmetry near ∞ boundaries.

Idea of proof for A-model equivalence in 3D K-equiv:

- (1) Decomposition of 3D K-equiv into flops. (OK by Kollár-Mori.) $X \cdots > X_1 \cdots > X_2 \cdots \cdots > X'.$
- (2) Symplectic deformation of any smooth 3D flop into copies of Atiyah P^1 -flop: In the K-equiv diragram,

$$Z = P^{1}, N_{Z/X} = O(-1)^{2}, Y = Bl_{Z}(X).$$

(OK by Mori's classification and Freidman's study on <u>ODP</u>.) For each P^1 -flop, $T = g' * g^* : H(X) \to H(X')$ is <u>canonical</u> in the sense that T preserves the Poincaré pairing.

(3) Quantum corrections: Let a, b, $c \in H^2(X)$. Then

$$\Delta := (Ta.Tb.Tc)^{x} - (a.b.c)^{x'} = (a.Z)^{x}(b.Z)^{x}(c.Z)^{x}.$$

Witten and Aspinwall-Morrison found that each degree d map $f: P^1 \to Z = P^1 \subset X$ has contribution by $1/d^3$. Hence the quantum 3-point function (virtual int. number via f) is given by

Here $q = \exp(-2\pi(\omega \cdot Z))$ depends on the Kähler variable ω . Since T(Z) = -Z', we have Tq = 1/q'. Hence

$$<$$
Ta, Tb, Tc $>^{x'}$ - T $<$ a, b, c $>^{x}$ = $\Delta(q'/(1-q') + Tq/(1-Tq)) = - Δ .$

Note: The convergent radii have no intersection!

(4) Degeneration of GW theory into local models. (OK by Li-Ruan.)

We (LLW) generalize this "analytic continuation" of QH to ordinary P^r -flops in all dimensions: Namely

$$Z = P^{r}, N_{Z/X} = O(-1)^{r+1}, Y = Bl_{Z}(X),$$

as well as the family case* when $Z = P_s(F) \rightarrow S$ is a P bundle.

- [1] LLW; Flops, motives and inv of quantum rings, Annals.
- [2] FW; Motivic and quantum inv under stratified Mukai flops, JDG.
- [3] ILLW; Inv of GW theory under simple flops (all genera).
- [4] LLW; Quantum inv under flop transitions (CY flops), Yau's 59th.
- [5] * LLW; Inv of quantum rings under ordinary flops.

NEW TOOLS: Reconstruction, quantization and re-normalization.

- B model: The g = 0 theory \equiv VHS.
- (1) For f: X \rightarrow S a smooth family, $R^kf*C \rightarrow$ S is a VHS of weight k with Gauss-Manin connection ∇^{GM} , Hodge filtration $\{F^p\}$ and flat (integral) structure R^kf*Z . Griffiths trans: $\nabla F^p \subset \Omega_S(F^{p-1})$.
- (2) For family of CY k-folds, rk $F^k = 1$ with local frame Ω . The periods integral $\int_{\Gamma} \Omega$ satisfies a Picard-Fuchs equation.
- A model: The g = 0 theory \equiv (QH, *).
- (1) Let $H = H_A = H^*(X)$. The tangent bundle $TH = H \times H$ has a Dubrovin connection $\nabla_a := D_a z^{-1} \ a *_t \ (t \in H)$.

WDVV Equation: ∇ is flat \Leftrightarrow * is associative.

(2) If X is toric, then "QH" also satisfies a Picard-Fuchs Eq.

(1) Mirror Symmetry: Up to SUSY, the eigen-spaces of super charges are exchanged. This predicts that for a CY 3-fold X, there exists another CY 3-fold X' s.t. $h^{1,1}(X) = h^{2,1}(X')$ and $h^{2,1}(X) = h^{1,1}(X')$.

Conjecture (Candelas 1990, BCOV 1993): A(X) = B(X') and B(X) = A(X') in the large complex/Kähler structure limits.

For quintic CY: $X = (5) \subset P^4$, the P^1 counting problem on X can be solved by the Picard-Fuchs ODE on X'. (Givental, LLY 1997.) This can be generalized to toric complete intersections. For examples, the dim k-2 Calabi-Yau hyper-surfaces: $CY_k = (k) \subset P^{k-1}$.

- (2) Birational Calabi-Yau's: A(X) = A(X') and B(X) = B(X').
- (3) Extremal Transitions: Let $f\colon X\to X_0$ be a crepant contraction and X_t ($t\in S$) be a smoothing of X_0 . Denote a general X_t by X'. The process X to X' is also a K-equiv (up to deformation). This is well defined without the Calabi-Yau assumption.
- (3-1) X has more $H^{1,1} = H^1(\Omega^1)$ than X', since X contains the extremal ray L under f. Thus A(X) > A(X').
- (3-2) X' has more $H^{2,1} = H^1(T)$ than X, since X' contains the vanishing cycle Γ of the degeneration. Thus B(X) < B(X').

CONJECTURE: A(X) + B(X) = A(Y) + B(Y).

LOCAL EXAMPLES: Consider the dim k hyper-surface $X_0 \subset C^{k+1}$:

$$x_0^k + x_1^k + \cdots + x_k^k = 0$$

with $p = 0 \in X_0$ being an ordinary k-fold singularity. The blow-up f: $X = Bl_p(X_0) \rightarrow X_0$ is crepant with exceptional divisor

$$E = (k) \subset P^k, N_{E/X} = O(-1)|_{E^*}$$

The local structure of $E \subset X$, namely the germ (E, X) is equivalent to P^k "cut out" by the rank 2 vector bundle:

$$V_k = O(k) \oplus O(-1) \rightarrow P^k$$

 X_0 can be smoothed into a flat family $M \to \Delta$ with general smooth fiber $X' = M_t$. The semi-stable reduction $\pi \colon W \to \Delta$ is used to compare X' and X' since $W_t = X'$ and $W_0 = X \cup E'$ for some Fano E'.

Quantum Transition from A to B:

The Gromov-Witten extremal function $f(a) = \sum_{d \in N} \langle a \rangle_{dL} q^{dL}$ attached to the extremal ray $L \in NE(X)$ can be calculated, using the quantum Serre duality principle, by the bundle

$$V_k^+ = O(k) \oplus O(1) \rightarrow P^k$$

This is in turn reduced to $O(k) \rightarrow P^{k-1}$, the Calabi-Yau CY_k !

Where is the Picard-Fuchs operator P_k for f(a)?

Since dim $CY_k = k - 2$, we must have deg P = k - 2. But dim X' = k. It must be the case that there is a "sub-VHS of $R^k\pi_*C$ of weight k-2" which starts at $\Omega \in H^{n-1,1} = H^1(X',T)$. Let Γ be the vanishing cycle along π , then P_k is the Picard-Fuchs op for $\int_{\Gamma} \Omega$.

BACK to the QMMP:

- 1. Allowing deformations, it seems that the MMP (at least for dim 3) can be performed purely in orbifolds with only divisorial contractions (K) and flops (K equiv) (Chen-Hacon).
- 2. GW theory has been extended to orbifolds (Chen-Ruan, CCTY).
- 3. The A + B invariance of orbifold flops is as expected.
- 4. For divisorial contraction $f: Y \to X$, the key claim is that it is precisely the A + B model which satisfies the change of variable formula (functoriality, W- 2000).
- 5. The A + B "should be" an extension of flat bundles. THANKS.