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Abstract 

It is difficult for pure statistics-based machine translation systems to process long 
sentences. In addition, the domain dependent problem is a key issue under such a 
framework. Pure rule-based machine translation systems have many human costs in 
formulating rules and introduce inconsistencies when the number of rules increases. 
Integration of these two approaches reduces the difficulties associated with both. In 
this paper, an integrated model for machine translation system is proposed. A 
partial parsing method is adopted, and the translation process is performed chunk 
by chunk. In the synthesis module, the word order is locally rearranged within 
chunks via the Markov model. Since the length of a chunk is much shorter than that 
of a sentence, the disadvantage of the Markov model in dealing with long distance 
phenomena is greatly reduced. Structural transfer is fulfilled using a set of rules; in 
contrast, lexical transfer is resolved using bilingual constraints. Qualitative and 
quantitative knowledge is employed interleavingly and cooperatively, so that the 
advantages of these two approaches can be retained. 

Keywords: Bigram Language Model, Lexical Selection, Machine Translation 
System, Probabilistic Chunker, Predicate-Argument Structure, X'-Theory. 

1. Introduction 

Many different approaches to machine translation design have been proposed [Bennett and 
Slocum 1985; Brown et al. 1992; Nagao 1984; Mitamura et al. 1991; Baker et al.1994].The 
traditional rule-based machine translation system [Bennett and Slocum 1985] is expensive in 
terms of formulating rules. It easily introduces inconsistencies, and it is too rigid to be robust. 
However, rules are usually universal; i.e., they are not domain dependent. In contrast, the 
statistics-based machine translation system [Brown et al. 1992] is based on noise channel 
model and is robust in processing partial and ill-formed sentences. The difficulty underlying 
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such systems is the register diversified problem. In addition, the computation time in 
processing long sentences sharply increases as the number of words increases. The 
example-based system [Nagao 1984] heavily depends on the quality of collected examples and 
the similarity measures between examples and input sentences. When the matched units are 
subsentential structures (e.g., phrase structures), the performance of such a system is better 
than that of a word-level system. As for the knowledge-based system [Mitamura et al. 1991; 
Baker et al. 1994], the difficulties are in how the knowledge is represented, how fine the 
knowledge is, and what the inference engine is. In addition, the cost of compiling knowledge 
is expensive. Table 1 summarizes the advantages and disadvantages of these approaches. From 
the viewpoint of system designers, if we could integrate the advantages of these approaches 
and get rid of their disadvantages, a hybrid system could perform better than any of the 
systems. For example, Brown et al. [1992] included a small amount of linguistic knowledge 
(parts of speech and morphological analysis) in their original statistical machine translation 
system. However, strictly speaking, the modified MT system is not a hybrid system. The 
knowledge is used to guide the search mechanism and to avoid unnecessary searching. 

The structure of this paper is as follows. Section 2 gives an overview of the proposed MT 
model. Sections 3, 4 and 5 discuss the analysis module, transfer module and synthesis module, 
respectively. Section 6 presents some experiments which demonstrate the feasibility of this 
MT model. Section 7 provides some concluding remarks. 

Table 1. Summary of Different Approaches to Machine Translation System 
 Advantages Disadvantages 

Rule-Based 

1. easy to build an initial system 
2. based on linguistic theories 
3. effective for core phenomena 

1. rules are formulated by experts 
2. difficult to maintain and extend 
3. ineffective for marginal 

phenomena 

Knowledge-Based

1. based on taxonomy of knowledge 
2. contains an inference engine 
3. interlingual representation 

1. hard to build knowledge 
hierarchy 

2. hard to define granularity of 
knowledge 

3. hard to represent knowledge 

Example-Based 

1. extracts knowledge from corpus 
2. based on translation patterns in 

corpus 
3. reduces the human cost 

1. similarity measure is sensitive 
to system 

2. search cost is expensive 
3. knowledge acquisition is still 

problematic 

Statistics-Based 

1. numerical knowledge 
2. extracts knowledge from corpus 
3. reduces the human cost 
4. model is mathematically grounded 

1. no linguistic background 
2. search cost is expensive 
3. hard to capture long distance 

phenomena 
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2. Overview of Our MT Model 

In statistics-based MT systems, researchers apply the noisy channel model to compute the 
probability of a translation. In reality, it is also easy to make use of probability under the 
traditional transfer-based MT framework. The advantages of the probabilistic transfer-based 
MT model over noisy channel model are: 

• It consists of much finer modules than does the noisy channel model. 

• Utilization of linguistic knowledge in the model is more natural than that in noisy channel 
model. 

• It agrees human intuition much more than does the noisy channel model. 

Such a machine translation system is assumed to consist of analysis, transfer and synthesis 
modules. When it receives an n-word source sentence Ws, this MT system generates an l-word 
target sentence Wt. Let the intermediate forms for the source part and target part be IFs and IFt, 
respectively. Equation 1 describes the general model of transfer-based MT systems [Chang 
and Su 1993]. This equation specifies that each representation is dependent on all its pervious 
representation(s) based on the traditional three-stage translation model: 

 (1) 
,

( | ) ( | ) ( | , ) ( | , , )
s t

t s s s t s s t t s s
IF IF

P W W P IF W P IF IF W P W IF IF W= × ×∑ . 

However, the number of parameters involved in this model is inevitably too large to put it into 
practice. Some reduction should be asserted. Assume that each representation only depends on 
its immediate previous representation. Equation 1 is reformulated as Equation 2: 

 (2) 
,

( | ) ( | ) ( | ) ( | )
s t

t s s s t s t t
IF IF

P W W P IF W P IF IF P W IF≅ × ×∑  

In fact, the complexity introduced by searching for possible combinations of these 
representations is also too high to endure. Further simplification in searching should be made. 
The simplification is that the best representation chosen in the previous stage is kept as the 
proper one. We call such a simplified machine translation model a pipelined machine 
translation model. On the other hand, the original one is called a conglomerated machine 
translation model. Figure 1 conceptualizes the two different translation models. 

Analysis 
P(IFs|Ws) 

Transfer 
P(IFt|IFs) 

Synthesis 
P(Wts|IFt) 

Translation Model 
P(IFs|Ws)*P(IFt|IFs)*P(Wt|IFt) 

(a) Pipelined Machine Translation Model

(b) Conglomerated Machine Translation Model

Ws IFs IFt Wt 

Ws Ws 

Figure 1. Pipelined Model vs. Conglomerated Model
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In using our translation model, one point should be noted. Although many efforts have 
been devoted to understanding texts, success has not been achieved in practical applications. 
For example, a knowledge-based system needs much hand-coded knowledge and a complex 
control component. However, it is not easy to extend application to the other domains. Thus, if 
a complex mechanism does not underpin good systems, why don't we apply a much simpler 
mechanism? The proposed MT system is used to demonstrate the feasibility of the following 
ideas. 

• Do not fully parse the texts. 

It is difficult to resolve the attachment problem in the parsing stage. 

• Do not devise many rules. 

 The great part of the knowledge is extracted from the corpus and expressed in numeric form.   
Some symbolic rules covering core phenomena are applied for effectiveness. 

• Quantitative parameters and qualitative rules are used cooperatively. 

Quantitative parameters are used to get a shallow analysis for sentences, and qualitative 
rules are used to determine their predicate-argument structures. 

• Increase the independence of participating language pairs. 

The synthesis module is based on the target language model. 

Our overall translation model is shown in Figure 2. The analysis module is composed of 
a tagger, a chunker and a detector for predicate-argument structures. The transfer module 
consists of a lexical selection component and a simple transfer component. The knowledge 
needed in the module is in a mutual information table, a simple bilingual dictionary, and the 
mapping rules of predicate-argument structures between language pairs. The third module is 
the synthesis module. It consists of a generator and a bi-gram table. All the knowledge 
(whether rules or training tables) will be discussed in the appropriate sections. 

Probabilistic 
POS Grammar 

Predicate 
Argument 
Structure 

Tagger Subcat- 
Tractor 

Chunker 

Probablistic 
Chunk 

Grammar 

Bilingual 
Dictionary 

Mutual Infor- 
mation Table 

Mapping 
rules 

Lexical 
Selection 

Simple 
Transfer 

 
Generator 

Markov 
Model 

ANALYSIS TRANSFER SYNTHESIS 

Source 
Sentences 

Figure 2. Pipelined Translation Model 

Target 
Sentences 
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The whole translation process is briefly introduced in the following. As Figure 1(a) 
shows, the analysis module is used to find IFs which has the largest P(IFs|Ws). IFs consists of 
a chunk structure (Cs) and a predicate-argument structure (PAs). That is, 

(3)   
( | ) ( , | ) ( | ) ( | , )

                  = ( ( | , ) ( | )) ( | , )

                 ( ( | ) ( | )) ( | , )
s

s

s s s s s s s s s s

s s s s s s s s
T

s s s s s s s
T

P IF W P C PA W P C W P PA C W
P C T W P T W P PA C W

P C T P T W P PA C W

= = ×

× ×

≅ × ×

∑

∑

. 

The chunk structure is a linear chunk sequence. In contrast, the predicate-argument structure 
provides the domination relation. The P(Ts|Ws) part is a probabilistic tagger; P (Cs|Ts) is a 
probabilistic chunker; P(PAs|Cs,Ws) is implemented using 23 rules rather than a probabilistic 
model. Source sentences are first input to a probabilistic tagger, and then a sequence of tags is 
sent to the chunker. The tagger is trained from the LOB Corpus [Johansson 1986] and has a 
95%correct rate. The chunker [Chen and Chen 1993] is used to determine the plausible 
boundaries of phrasal structures and then to segment the input tags into a series of chunks. The 
predicate-argument structures are determined by using 23 pre-defined verb patterns. The 
SUBCAT-TRACTOR is applied to detect the predicate-argument structures [Chen and Chen 
1994a]. 

The transfer module consists of two components shown in the following: lexicon 
selection (lexical transfer) and simple transfer (structural transfer): 

(4)   
( | ) ( , | , )

                  = ( | , , ) ( | , )
                 ( | ) ( | )

t s t t s s

t t s s t s s

t s t s

P IF IF P C PA C PA
P C PA C PA P PA C PA
P C C P PA PA

=

×

≅ ×

. 

The simple transfer mechanism focuses on the predicates and only maps the predicates and 
arguments of source sentences into the respective constituents of target sentences (PAs→PAt). 
These predicate-argument structures are regarded as the skeletons of sentences. The simple 
transfer mechanism transfers the source skeleton to the target skeleton. The remaining "flesh" 
is adjusted in the synthesis module. Therefore, some overheads are reduced in the traditional 
transfer stage under our framework. The transfer module looks for the target mapping of the 
detected structure. This is resolved by a set of transfer rules. For example, (i) shows a 
mapping of predicate-argument structures between English and Chinese: 

 

(i) Kevin gave John a passkey.             [arg0] give [arg1] [arg2] 

凱文   把   萬能鑰匙  給了 約翰。  [arg0] 把 [arg2] 給了 [arg1] 

            Kevin  Ba   passkey    give  John . 



 

 

152                                         Kuang-Hua Chen, and Hsin-Hsi Chen 

The transfer module is also responsible for lexicon selection (Cs→Ct). The lexicon selection 
algorithm is presented on the basis of source and target word associations [Church and Hanks 
1990]. Word association of source and target languages can be trained independently from the 
corresponding text corpora. The bilingual dictionary sets up the word correspondence. The 
proposed method chooses the most informative mates in the source language as well as in the 
target language. On the one hand, bilingual corpora are not needed in our approach; thus, the 
difficulty of collecting a large number of bilingual texts for reliable probabilities is avoided. 
On the other hand, the computation of our method is not complex. 

Language generation is the task of the synthesis module. The word order of the target 
sentence is determined by global reordering and local reordering. The reordering tasks are 
performed by the simple transfer rules R and synthesis module P(Wt|Ct) shown in Figure 3, 
respectively. 

 
Figure 3. Global Reordering and Local Reordering 

Therefore, the model for the synthesis module P(Wt|IFt) can be rewritten as: 

(5)   ( )

( )

( )
(1)

         
( ) ( ) ( )( )1

1 1
1

( ) ( ) 1 ( )
1 1

( | ) ( | , ) ( | , ) ( | )

                ( | ) ( | )

                ( ) ( | )

R i

R i

R m
t t t t t t t t R

m m l
R i R i R iR i

i i
lm

R i 1 R i j R i j
i j

P W IF P W C PA P W C R P W Ct

P Wt Ct P Wt Ct

P Wt P Wt Wt

= =
−

+
= =

= ≅ ≅

≅ =

≅

∑ ∑

∑ ∏

. 

where lR(i) denotes the number of words in target chunk cR(i). The corpus provides a large 
volume of lively language phenomena. The implicit word order can be trained from the corpus 
andmeasured in terms of probability. In addition, many marginal phenomena can be covered 
naturally. This is why the Markov model is used in the synthesis module. 
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Cs2 

 

• 
• 
• 
 

Csm 

Transfer 
Module 

 
R 
 

Global 
Recordering

CtR(1) 

 

CtR(2) 

 

• 
• 
• 
 

CtR(m) 
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3. Analysis Module 

Two tasks are fulfilled in this module: one is determination of the chunk sequence, and the 
other is determination of the predicate-argument structures. The following section describes 
this module in detail. 

3.1 Partial Parsing 
Different intermediate forms result in different analysis methods. Here, we choose linear 
analysis for the input sentence. The main component of the analysis module is a partial parser. 
The partial parser is motivated by an intuition shown below. 

 

(ii) When we read a sentence, we read it chunk by chunk. 

 

Based on this intuition, we call the partial parser a chunker. The chunker receives tagged texts 
and outputs a linear chunk sequence. For example, the sentence in (ii) may be chunked into 

 

[When we] [read a sentence], [we usually read it] [chunk by chunk]. 

 

The words between the left square bracket and the right square bracket form a chunk. When 
reading the sentence, we pause briefly between chunks. In fact, chunks can be regarded as the 
plausible phrase structure. Abney [1991] has discussed a rule-based chunker. The following 
will describe a probabilistic chunker. Given an n-word sentence, ws1, ws2, ..., wsn (including 
punctuation marks), the parsing task is to find the best chunk 

sequence, Ĉs , such that 

(6)    1
ˆ arg max ( | ) arg max ( | )

i i

n
i s i

Cs Cs
Cs P Cs W P Cs Ws= = . 

Csi is a possible chunk sequence, 1 2, ,...,
imcs cs cs , where mi is the number of chunks in the 

chunk sequence. To chunk raw texts without using other information is very difficult since the 
word patterns are numbered in billions. Therefore, a tagger is applied to preprocess the raw 
texts, and each word is given a unique part of speech. That is, for an n-word sentence, ws1, 
ws2, ... , wsn (including punctuation marks), the parts of speech ts1, ts2, ..., tsn are assigned to 
the respective words. Now, the working model is: 
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(7)   

s 1

1 1 1 1

1 1 1

ˆ arg max ( | )

    arg max ( | , ) ( | )

    arg max ( | , ) ( | )

    arg max ( | ) ( | )

i

i

i

i

n
i

Cs

i s
TsCs

n n n n
i s

TsCs

n n n
i

Cs

C P Cs Ws

P Cs Ts W P Ts Ws

P Cs ts W P ts Ws

P Cs ts P ts Ws

=

= ×

= ×

≅ ×

∑

∑
. 

To resolve the optimization problem, various language models may be adopted. Here the 
bi-gram Markov model is applied. We then reduce 1( | )n

iP Cs ts  as shown equation 8: 

(8) 1 1 1 1 1 1 1
1 1

( | ) ( | ) ( | , ) ( | ) ( | ) ( )
i im m

n mi n n n
i i i k k i k i k k i k

k k
P Cs ts P cs ts P cs cs ts P cs ts P cs cs P cs− −

= =
= ≅ × ≅ ×∏ ∏  

where 1 1( | )mi n
iP cs ts denotes the probability for the i'th chunk sequence. Note that an xtra 

sentence initial marker denoted by c0 is added. Following equation 8, equation 7 is rewritten as 
equation 9: 

(9)    
1 1

1

1
1

ˆ arg max ( | ) arg max ( | ) ( )

   arg max [log( ( | )) log( ( ))]

i

i i

i

i

m
n

i i k k i k
kCs Cs

m
i k k i k

kCs

Cs P Cs ts P cs cs P cs

P cs cs P cs

−
=

−
=

= ≅ ×

= +

∏

∑

. 

Dynamic programming shown in Algorithm 1 is used to find the best chunk sequence. score[i] 
denotes the score of position i. The words between position pre[i] and position i form the best 
chunk from the viewpoint of position i. dscore(ci) is the score of probability P(ci), and 
cscore(ci|ci-1) is the score of probability P(ci |ci-1). These scores are collected from the training 
corpus, SUSANNE Corpus [Sampson 1995]. 

Algorithm 1: Chunker 
Input: word sequence w1, w2, ..., wn, and the corresponding POS sequence t1, t2, ..., tn 
Output: a sequence of chunks c1, c2, ..., cm 
Method:  (1) score[0] = 0; 

pre[0] = 0; 
 (2) for (i = 1; i<n+1; i++) do 3 and 4; 
 (3) j j j-1

0
j arg max(score[pre[j]] dscore(c )+cscore(c |c ))

j i≤ <
∗ = + ; 

where tj+1, ..., ti; cj-1= tpre[j]+1, ..., tj; 
(4) score[i]=score[pre[j*]]+dscore(cj*)+cscore(cj*|cj*-1); pre[i] = j*; 
(5) for (i=n; i>0; i=pre[i]) do 

output the word wpre[i]+1, ..., wi to form a chunk; 
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3.2 Determination of Predicate-Argument Structures 
The analysis model not only produces the chunk sequence, but also determines the 
predicate-argument structure. P(PAs|Cs,Ws) is used to describe the functionality of this part, 
but at present it is implemented in rules. It is not difficult to determine these structures using 
chunk sequences and word information. As shown in the Figure 4, a finite state mechanism, 
SUBCAT-TRACTOR, selects one out of 23 predefined predicate- argument structures [Chen 
and Chen 1994a]. These structures are a modified version of definitions in the Oxford 
Advanced Learner's Dictionary (OALD) [Hornby 1989]. Table 2 summarizes these 
predicate-argument structures. 

Figure 4. Finite State Mechanism for Extraction of Predicate-Argument Structures 

Table 2. Predicate-Argument Structures 
Types Predicate-Argument Structure Types Predicate-Argument Structure 
Cna Complex-trans. verb + noun + adj. Tf Transitive verb + finite that-clause 

Cnn/a Complex-trans. verb+noun+as+noun 
(adj.) Tg Transitive verb + -ing form 

Dnf Double-trans. verb +noun+finite 
that-clause Tnp Transitive verb + noun + particle 

Dnw Double-trans. verb + noun + wh-clause Tsg Transitive verb + noun's + -ing form 

Dprf Double-trans. verb +prep.+finite 
that-clause Tw Transitive verb + wh-clause 

Dprt Double-trans. verb +prep.+ to-infinitive Vn Verb + noun 
Dprw Double-trans. verb +prep.+wh-clause Vng Verb + noun + -ing form 
I Intransitive verb Vni Verb + noun + infinitive 
Ip Intransitive verb + particle Vnt Verb + noun + to-infinitive 
Ipr Intransitive verb + prep. Vnn Verb + noun + noun 
La Linking verb + adj. Vnpr Verb + noun + prep. 
  Vt Verb + to-infinitive 
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Since some noun phrases might be moved to other places, e.g., passive sentences, to determine 
predicate-argument structures requires that this issue be taken into account. Move-a [Sells 
1985] formalizes the phenomenon that a constituent is moved to the landing site, and that a 
trace is left at the empty site. In general, the moved constituent is an NP, and the object 
position is a possible empty site. Thus, the effect of movement transformation must be 
considered when predicate-argument structures are formulated. Two rules are shown as 
follows. 

•While it is a passive sentence, the predicate-argument structure of a matrix verb is added an 
argument, for example, eat in the sentence "an apple is eaten by Mary". 

•The predicate-argument structure of a verb in a relative clause whose relative pronoun serves 
as object is added to an argument, for example, meet in the sentence "the man whom you met 
is my brother". 

Another problem is induced by compound nouns. For example, a transitive verb may be 
misrecognized as a ditransitive verb. An NP-TRACTOR [Chen and Chen 1994b] is applied to 
collecting noun phrases. 

4. Transfer Module 

The previous section specified that the output of the analysis module is a chunk sequence with 
a head word and the underlying predicate-argument structure. Upon receiving the information, 
the transfer module has to complete two tasks. One is lexical transfer, and the other is 
structural transfer. This is described by the mathematical model P(Ct|Cs) × P(PAt|PAs). The 
lexical transfer, P(Ct|Cs), is intended to select the proper target counterpart for a source word, 
and the structural transfer, P(PAt|PAs) , is intended to change the chunk order according to the 
predicate-argument structure provided by the analysis module. This kind of transfer module 
only performs simple transfer, that is, transfers the skeleton of the source language to that of 
the target language. Transfers within chunks are fulfilled in the synthesis model. 

4.1 Simple transfer 
Simple transfer focuses on the relationship between predicates and arguments. The 
predicate-argument structure forms the skeleton of the whole sentence, and the other 
constituents are the modifying components. Consider example (iii). Gave is a ditransitive verb, 
which introduces two internal arguments: one receives the accusative case, and the other 
dative case: 

 

(iii) I gave Mary a book.  我 把 書 給了 瑪莉。 
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In English, both "I gave Mary a book" and "I gave a book to Mary" are correct while the 
corresponding Chinese is " 我把書給了瑪莉 " is the general form. In the above example, the 
argument structure is formed by gave, I, Mary, and book. Gave is the predicate. I plays the 
role of external argument, and two internal arguments are Mary and book. Figure 5 shows the 
transfers between the two different languages. The predicate- argument structures constrain 
the word order in the coming synthesis module. 

 
           Figure 5. The Simple Transfer across Languages 

A set of rules is responsible for transfer of predicate-argument structures across 
languages. Each rule deals with one predicate-argument structure. These structures are 
determined in the analysis module as discussed in Section 3.2. Some mappings of 
predicate-argument structures between English and Chinese are direct. These predicate- 
argument structures are I, Ipr, Ip, La, Vn, Vt, Vnt, Vng, Vni, Tf, Tnp, Tw, Tg, Tsg, Dnf, Dprf, 
Dnw, Dprw, and Dprt. The mapping rules for the rest of the predicate- argument structures are 
shown in Table 3. 

Table 3. The Mapping Rules for Predicate-Argument Structures 

 English Predicate-Argument Structure Chinese Predicate-Argument Structure 

Vnpr arg0 verb arg1 preposition arg2 arg0 使 (把, 將) arg1 verb arg2 

Cna arg0 verb arg1 adjective arg0 使 (把, 將) arg1 verb adjective 

Cnn/a arg0 verb arg1 as arg2 arg0 verb arg1 為 arg2 

 arg0 verb arg1 as adjective arg0 verb arg1 為 adjective 

Vnn arg0 verb arg1 arg2 arg0 使 (把, 將) arg2 verb arg1 

The main difference between English and Chinese is in the positions of prepositional 
phrases. In Chinese, they are in pre-modifying positions. Therefore, resolving the problem of 
prepositional phrase attachment is indispensable. Some approaches to determination of PPs 
have been reported in the literature [Kimball 1973; Frazier 1978; Ford et al. 1982; Shieber 
1983; Wilks et al. 1985; Liu et al. 1990; Chen and Chen 1992; Hindle and Rooth 1993; Brill 
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and Resnik 1994]. The possible kinds of attachment they consider are NOUN attachment and 
VERB attachment. These resolutions fall into three categories: syntax-based, semantics-based 
and corpus-based approaches. These approaches resolve PP attachment via only one language 
consideration. In contrast, because PP-attachment is a part of our machine translation system, 
we investigate this problem from the viewpoint of machine translation and do not restrict 
ourselves in the two possible attachment choices. 

 
Figure 6. Semantic Tags for Verbs 

 
Figure 7. Semantic Tags for Nouns 

In general, four factors influence the determination of PP-attachment: 1) verbs, 2) 
accusative nouns, 3) prepositions, and 4) oblique nouns. A total of 68 rule-templates in the 
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form of 4-tuple <V, N 1, P, N 2> are used to decide on the attachment point, where V denotes 
semantic tag of the verb, N 1 denotes the semantic tag of accusative noun, P denotes the 
preposition and N 2 denotes the semantic tag of oblique noun. These semantic tags for verbs 
and nouns are shown in Figure 6 and Figure 7. In addition, we distinguish four kinds of 
prepositional phrases. 

• Predicative Prepositional Phrases (PPP): PPs that serve as predicates. 

He is at home. He found a lion in the net. 

• Sentential Prepositional Phrases (SPP): PPs that serve as functions of time and location. 

There is no parking along the street. We had a good time in Paris. 

• Prepositional Phrases Modifying Verbs (VPP) 

I went to a movie with Mary. I bought a book for Mary. 

• Prepositional Phrases Modifying Nouns (NPP) 

The man with a hat is my brother. Give me the book on the desk. 

When a prepositional phrase occurs, we check whether it is PPP, SPP, or VPP. Otherwise, it is 
an NPP. The procedure for resolving PP attachment is shown as follows. 

Algorithm 2: Resolution to PP-Attachment 
(1)    Check if it is a PPP according to the predicate-argument structure. 
(2)    Check if it is an SPP according to 21 rule-templates for SPP. 
(3)    Check if it is a VPP according to 47 rule-templates for VPP. 
(4)    Otherwise, it is an NPP. 

Appendix A lists 21 rule-templates for SPP and 47 rule-templates for VPP. 

4.2 Lexical Selection 
Assume that the probability of a source and target language pair (Cs,Ct) is P(Cs,Ct). By the 
definition of conditional probability, P(Cs,Ct) =P(Cs) × P(Ct|Cs) = P(Ct) × P(Cs|Ct). The 
co-occurrence of a source and target pair could be explained by either side. These probabilities 
are the implicit bilingual constraints, and this implies that the source language and target 
language can disambiguate each other [Alshawi 1994]. As the result, many approaches based 
on bilingual corpora or bilingual machine readable dictionaries have also been proposed which 
select the right senses of words. Brown et al. [1992] applied a flip-flop algorithm to decide on 
the informants of a word and to use the mutual information of informant and the word to 
choose the sense. However, the training data used in their approach is huge (12,028,485 
connections extracted from 1,002,165 pairs of short French and English), and aligned 
bilingual texts are needed. Firth [1968] pointed out that "You shall know a word by the 
company it keeps." We thus follow this concept and propose an algorithm to disambiguate 
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word sense. Doi and Muraki [1993] have used a similar idea in choosing a Japanese lexicon 
from its English counterpart. The most informative word is used as a constraint to select the 
proper target word. Here, "the most informative" means that two words with the highest 
mutual information (MI) will disambiguate each other. The mutual information is 

(10)  
( , )

( ) ( )
( , ) ( , )( , ) log log log

( ) ( ) ( ) ( )

f x y
N

f x f y
N N

P x y f x y NMI x y
P x P y f x f y

×
= = =

× ××
, 

where f(x) and f(y) are the frequencies of x and y in the training corpus, respectively. f(x,y) is 
the frequency of x and y co-occurring in the training corpus, and N is the number of words in 
the training corpus. Figure 8 shows how bilingual constraints operate. 

 
Figure 8. Bilingual Constraints 

Assume that a source sentence contains n words, and that the word pair (ws1,wsn) has the 
highest MI. In our model, the two senses which have the maximal MI are selected from 
{wt11, ..., wt1m1} and {wtn1, ..., nnmwt  }, respectively, and are regarded as the translation of 
ws1 and wsn. For example, the right Chinese counterpart of the sentence "flying plane makes 
her duck" is "正在飛的飛機使她迅速低頭". "Fly" has many senses in Chinese such as "飛 ", 
"逃出", etc. "Duck" has four readings in Chinese: "鴨子", "迅速低頭", "暫時沒入水中", and 
"水陸兩用車". The possible readings of each word are listed in Table 4. 

Table 4. The Possible Chinese Translations of Various English Words 

Words fly plane make her duck 
Sense 1 飛 平面 吃 她 鴨子 

Sense 2 逃出 飛機 使 她的 迅速低頭 

Sense 3   規定  水陸兩用車 

Sense 4   製造  暫時沒入水中 
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Word pairs (make,duck), (her,duck), (make,her), (plane,her), (plane,make), and 
(fly,plane) are with the value of MI in descending order. The word pair (make,duck) has the 
highest MI, so both words are the most informative to each other. Then, the senses of the two 
words are determined by MI of the target words. Therefore, the right senses, "使" and "迅速低

頭", are selected, and the senses of the two words are fixed. The second highest MI is the word 
pair (her,duck). Since the sense of duck is fixed, the sense of her is the one which has the 
highest MI with "迅速低頭". Using the same procedure, we can determine the sense of each 
word. After using the procedure, the word of which the sense is not fixed is assigned the most 
frequent sense. The algorithm is listed in detail as follows. 

Algorithm 3: Lexical Selection 
Notation:  Si: the i'th word of the source sentence 

Tik: the k'th target translation of the i'th word of the source sentence 
MI(Ei ,Ej): mutual information of two expressions 

Input:     A sentence consists of n words, S1 , S2 , ..., Sn. 
Output:    A target word sequence. 
Method:   (1) Select the source word pair Si and Sj that has the largest MI(Si , Sj),  

where at least one of their senses is not fixed. 
(2) Select the target word pair 

piT and 
qjT that has the largest ( , )

p qi jMI T T . 

(3) Fix the target translation of Si and Sj as 
piT and 

qjT , respectively. 

(4) Repeat (1) to (3) until every target translation of Si (i = 1, 2, ..., n) is fixed. 

5. Synthesis Module 

In general, the synthesis module is responsible for producing natural language from a special 
structure. For example, the synthesis module in a knowledge-based system generates natural 
language form concept structures [Baker et al. 1994]. Some complicated language generation 
systems involve taking syntactic knowledge, semantic knowledge, pragmatic knowledge and 
world knowledge into consideration [McKeown and Swartout 1987]. However, to generate a 
"natural" sentence is not easy. It raised several questions. How do we choose the appropriate 
words, how do we arrange the word order, and where do we insert extra words? Since 
pragmatic knowledge or world knowledge is very subtle, to effectively use it is very difficult. 
McKeown [1987] has discussed two kinds of generation: deep generation and surface 
generation. Deep generation is responsible for determining the text content; surface generation 
is responsible for selecting lexical items. Usually, the two generation mechanisms are 
concatenated as pipelined modules. Such a complicated text generation system, in fact, covers 
many tasks performed by the analysis module and the transfer module in a machine translation 
system. For instance, surface generation could be handled in the transfer module (lexical 
transfer as discussed in a previous section), and deep generation could be determined in the 
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analysis module as a knowledge-based MT system does. 

Since many tasks are performed in other modules in our MT model, the synthesis module 
is only responsible for reordering words in chunks. Chunk reordering, discussed in a previous 
section, focuses on global reordering; in contrast, word reordering in chunks is regarded as 
local reordering. Equation 5 is presented again in the following: 
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In Equation 5, R denotes the selected simple transfer rules or PP-attachment rules, i.e., PPP, 
NPP, VPP, or SPP. Therefore, R functions as a permutation function, that is R: {1, 2, ..., m}→ 
{1, 2, ..., m}. lR( i) denotes the number of words in target chunk cR(i). The target word order is 
captured by the Markov model as equation 5 shows. The disadvantage of the Markov model is 
its lack of capability in capturing long distance phenomena. However, this disadvantage is 
reduced in our model, since long distance phenomena are less in chunks. The knowledge of 
word order can be trained from large corpora. The Newspaper Corpus, a segmented Chinese 
corpus composed of texts from three major newspapers, was used as the training corpus. Table 
5 lists the extracted statistic information. 

Table 5. Statistic Information of the Newspaper Corpus 

Corpus Total Words Different Words Word Bi-Gram 
Newspaper Corpus 2,636,793 43,262 921,633 

6. Experiments 

A total of 670 sentences are used to test this proposed MT model. These testing sentences 
contain intransitive verbs, transitive verbs, ditransitive verbs, prepositional phrases and some 
common constituents in English. Basically, the testing sentences could be partitioned into 
three parts: NP + VP + PP. The PP part might modify verbs in VP, nouns in VP or the whole 
sentence. Thus, these testing suite represented general phenomena in language. The results 
were evaluated using two factors. One is word sense; the other is word order. For word sense, 
four grades are considered: A, B, C and don't care. By human intuition, a target word is 
recognized as grade A (C) which depends on whether the meaning of the corresponding source 
word is expressed correctly (wrong) exactly. A target word is marked as don't care, if the 
corresponding source word is not found in the dictionary, or if it is an idiom which cannot be 
translated directly. The remaining words are regarded as grade B. The score for word sense, 
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SWS, is defined as 

(11)   #of  A #of  B #of C
#of don't care

a b cS S SSWS
n

× + × + ×
=

−
, 

where Sa = 1, Sb = 0.5, Sc = 0 and n is the number of words. 

For word order, the difference between exact word position (EWP) and generated word 
position (GWP) for each word is considered. Therefore, the difference of word order, DWO, is 
defined as 

(12)  
1

( ( )) /i i
n

i
DWO abs EWP GWP n

=
= −∑ , 

where n is the number of words. 

Note that a high SWS means good results. On the contrary, a high DWO denotes bad results. 
These two factors together reflect the performance of the MT system. Based on these 
definitions, the results of the evaluation are shown in Table 6. 

Table 6. Experimental Results 

SWS Number DWO Number 

0.9 ≤ SGS ≤ 1.0 145 0.0 ≤ DWO < 1.0 457 

0.8 ≤ SGS < 0.9 224 1.0 ≤ DWO < 2.0 113 

0.6 ≤ SGS < 0.8 242 2.0 ≤ DWO < 3.0 56 

0.0 ≤ SGS < 0.6 59 3.0 ≤ DWO 44 

From Table 6, the performance of the testing on sentences is promising. The number of 
sentences with SWS higher than 0.6 is 611 (91%), and the number of DWO values less than 1.0 
dominates the entire distribution (68%). The efforts to recover the original word order from 
the generated word order are also considered. They are measured according to the number of 
"key strokes" for recovering. Typically, to move a word needs a key stroke (the actions of cut 
and paste are regarded as one key stroke). This measure is important for MT systems in the 
post-editing phase. The distribution of key strokes is listed in Table 7. The average number of 
key strokes for recovering a sentence is 0.5. 

Table 7. The Distribution of Key Strokes 

Key Strokes Number 
0 447 
1 142 
2 53 
3 25 
4 3 
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7. Conclusion 

In this paper, an integrated approach to machine translation design has been proposed. It not 
only has advantages of the qualitative approach in coverage of core linguistic phenomena, but 
also keeps the advantages of the quantitative approach in dealing with marginal linguistic 
phenomena. The statistics-based approach and linguistic theory are complementary. The 
statistics-based approach is robust. It provides simple language models for analyzing 
unrestricted texts. However, it may need a large completely-annotated corpus to deal with 
complex linguistic phenomena. Linguistic theory gives such a supplement. Well-formed 
patterns can be explained properly by means of universal principles, so that they can be 
formulated in terms of rules easily. 

Since fully understanding sentences will not be possible in the near future, the proposed 
MT system does not completely parse input sentences. A partial parsing method is adopted, 
and the translation process is performed chunk by chunk. In the synthesis module, the word 
order is locally rearranged in chunks via the Markov model. Since the length of a chunk is 
much shorter than that of a sentence, the disadvantage of the Markov model in dealing with 
long distance phenomena is greatly reduced. Structural transfer is fulfilled using a set of rules; 
in contrast, lexical transfer is resolved using mutual information which is trained from the text 
corpora. Qualitative and quantitative knowledge is used interleavingly and cooperatively in 
the proposed MT system. 

A testing suite containing general phenomena in language usage has been used to 
evaluate the feasibility of the proposed MT system. The performance measures are based on 
word sense and word order. The experimental results show that the integrated approach to the 
MT system has good performance in both measures. The post-editing efforts needed in this 
MT system is also small in the testing suite. 
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Appendix A. Rule Templates for PP-Attachment 
The following lists rule-templates for PP-attachment. Every template consists of four elements 
<V, N1, P, N2>. The curl bracket pair denotes OR, the underline denotes DON'T CARE and ~ 
denotes NOT. 
I. Rule-templates for SPP 

1. <___, ___, about, time> 

2. <___, ___, across, location> 

3. <___, ___, after, time> 

4. <___, ___, along, location> 

5. <___, ___, among, location> 

6. <___, ___, at, {location, time}> 

7. <___, ___, before, time> 

8. <___, ___, between, {location, time}> 

9. <___, ___, by, time> 

10. <___, ___, during, time> 

11. <___, ___, in, {location, time}> 

12. <___, ___, in_front_of, location> 

13. <___, ___, near, location> 

14. <___, ___, next_to, location> 

15. <___, ___, on, time> 

16. <___, ___, out_of, {abstract, location}> 

17. <___, ___, over, {location, time}> 

18. <___, ___, through, {abstract, event, time}> 

19. <___, ___, under, time> 

20. <___, ___, with, abstract> 

21. <___, ___, without, abstract> 
II. Rule-templates for VPP 

1. <motion, ___, about, {object, location}> 

2. <at_ment, ___, about, object> 

3. <action, animate, about, ___> 

4. <action, event, after, concrete> 



 

 

168                                         Kuang-Hua Chen, and Hsin-Hsi Chen 

5. <at_ment, {abstract, event}, after, {event, no, time}> 

6. <motion, ___, across, {location, object}> 

7. <{at_nonmen, ai_nonmen}, ___, along, {location, object}> 

8. <~motion, ~{concrete, location}, among, {concrete, location}> 

9. <~{at_nonmen, ai_nonmen}, ___, at, {animate, object}> 

10. <{at_nonmen, ai_nonmen}, ___, at, {location, object}> 

11. <action, event, after, concrete> 

12. <at_ment, {abstract, event}, after, {event, no, time}> 

13. <{at_nonmen, ai_nonmen}, {event, object}, between, {abstract, concrete, location}> 

14. <{at_nonmen, ai_nonmen}, {event, object}, between, time> 

15. <motion, ___, by, {location, object}> 

16. <___, ___, by, manner> 

17. <~motion, ___, by, {location, object}> 

18. <___, ___, by, {abstract, event, object, vehicle}> 

19. <___, ___, by, animate> passive voice 

20. <___, ___, for, time> 

21. <motion, ___, for, location> 

22. <~linking, ___, for, {abstract, concrete, event}> 

23. <___, ___, for, {abstract, event, object}> 

24. <___, ___, for, animate}> 

25. <{motion, speech_act}, ___, from, entity> 

26. <motion, ___, in, {location, object}> 

27. <___, ___, in, time> 

28. <___, ___, in, vehicle> 

29. <ai_nonmen, ___, in_front_of, {concrete, location}> 

30. <ai_nonmen, ___, inside, {concrete, location}> 

31. <___, ___, into, {abstract, concrete, location}> 

32. <act, ___, like, ___> 

33. <___, ~{location, object}, near, {location, object}> 

34. <___, ~{location, object}, next_to, {location, object}> 

35. <{at_nonmen, ai_nonmen}, {event, object}, on, {concrete, location, object}> 
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36. <___, ___, on, event> 

37. <___, ___, on_to, {location, object}> 

38. <motion, ___, out_of, {concrete, location}> 

39. <___, ___, over, {abstract, event}> 

40. <motion, ___, over, {concrete, location}> 

41. <ai_nonmen, ___, through, {location, object}> 

42. <{ai_nonmen, at_nonmen}, ___, under, {abstract, object}> 

43. <___, ___, until, time} 

44. <at_nonmen, ___, with, object> 

45. <at_nonmen, ___, with, animate> 

46. <at_nonmen, ___, without, object> 

47. <at_nonmen, ___, without, animate> 
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